

ACCURAT
Analysis and Evaluation of Comparable Corpora

for Under Resourced Areas of Machine Translation

www.accurat-project.eu

Project no. 248347

Deliverable D2.6

Toolkit for multi-level alignment and information

extraction from comparable corpora

Version No. 3.0

29/06/2012

http://www.accurat-project.eu/

 Contract no. 248347

D2.6 V3.0 Page 2 of 164

Document Information

Deliverable number: D2.6

Deliverable title: Toolkit for multi-level alignment and information extraction

from comparable corpora

Due date of deliverable: 31/08/2011

Actual submission date

of deliverable:

31/08/2011 (version 1.0)

30/12/2011 (version 2.0)

29/06/2012 (version 3.0)

Main Author(s): Radu Ion, Mārcis Pinnis, Dan Ştefănescu, Ahmet Aker, Monica

Paramita, Fangzhong Su, Elena Irimia, Xiaojun Zhang, Nikola

Ljubešić

Participants: Radu Ion, Mārcis Pinnis, Dan Ştefănescu, Ahmet Aker, Monica

Paramita, Fangzhong Su, Elena Irimia, Xiaojun Zhang, Nikola

Ljubešić

Internal reviewer: Tilde

Workpackage: WP2

Workpackage title: Multi-level alignment methods and information extraction from

comparable corpora

Workpackage leader: RACAI

Dissemination Level: PU

Version: V3.0

Keywords: Toolkit, document alignment, phrase alignment, comparable

corpora, named entity recognition and alignment, terminology

extraction and alignment

History of Versions

Version Date Status Name of the

Author

(Partner)

Contributions Description/ Approval

Level

V0.1 01/08/2011 Draft RACAI All partners Initial compilation

V0.2 02/08/2011 Draft RACAI RACAI Added RACAI

contributions

V0.3 03/08/2011 Draft RACAI RACAI Added some more RACAI

contributions

V0.4 04/08/2011 Draft RACAI RACAI, USFD Added some

modifications requested

by USFD and even some

more RACAI tools

 Contract no. 248347

D2.6 V3.0 Page 3 of 164

Version Date Status Name of the

Author

(Partner)

Contributions Description/ Approval

Level

V0.5 05/08/2011 Draft RACAI RACAI Added Intro and a section

about pipelines

V0.6 08/08/2011 Draft TILDE TILDE Spell-checking and re-

formatting of sections 1-5.

V0.7 10/08/2011 Draft TILDE TILDE, DFKI,

USFD

Integrated and spell-

checked DFKI toolkit for

multi-level parallel phrase

extraction. Updated

AlignerUSFD section

V0.8 16/08/2011 Draft TILDE TILDE Updated Introduction,

improved General Use

Case Section and

TildeNER section.

V0.9 23/08/2011 Draft TILDE TILDE, USFD Added KEATEWrapper

and OpenNLPWrapper

section, updated

MapperUSFD, TildeNER

and Tilde’s wrapper

system’s for CollTerm

section.

V0.10 23/08/2011 Draft RACAI RACAI Modified PEXACC

documentation

V0.11 23/08/2011 Draft TILDE TILDE, USFD,

FFZG

Updated MapperUSFD

section and the Tilde’s

wrapper system’s for

CollTerm section.

V0.12 24/08/2011 Draft TILDE TILDE Changed document

structure

V0.13 24/08/2011 Draft RACAI RACAI, DFKI,

USFD

Changed EMACC

documentation. Added

modifications to all other

documentations in Section

2 of this document. Added

an executive summary.

V0.14 25/08/2011 Draft RACAI CTS, RACAI Added documentation

from CTS and

documentation for

RACAI NERA1 and TE.

V0.15 26/08/2011 Draft RACAI RACAI, CTS Added information about

parallel data extraction

workflow and changed

ComMetric I/O section.

 Contract no. 248347

D2.6 V3.0 Page 4 of 164

Version Date Status Name of the

Author

(Partner)

Contributions Description/ Approval

Level

V0.16 29/08/2011 Draft RACAI RACAI Added documentation

about NERA2 and

RACAI Terminology

Aligner applications. Also

added conclusions.

V0.17 29/08/2011 Draft RACAI RACAI, FFZG Modified the

documentation for parallel

data extraction workflow.

Updated documentation

from FFZG (CollEX).

V0.18 30/08/2011 Draft RACAI TILDE Added the documentation

of the NE/Term mapping

workflow from Tilde and

included the Document

Aligner documentation..

V0.19 31/08/2011 Final RACAI RACAI Re-written the

Introduction at Tilde’s

suggestion and added a

tool table summary. Final

checks.

V1.0 31/08/2011 Final TILDE TILDE Submitted to EC

V1.01 10/10/2011 TILDE TILDE NERTEWF, TildeNER

and Tilde’s Wrapper

System’s for CollEx

updates for the second

release of the Toolkit.

V1.02 15/12/2011 TILDE TILDE, FFZG Replaced CollEx with

CollTerm from FFZG and

updated Tilde’s Wrapper

System for CollEx to

Tilde’s Wrapper System

for CollTerm

V1.03 16/12/2011 TILDE TILDE, DFKI Replaced DFKI’s ME

parallel data extractor.

V1.04 21/12/2011 TILDE TILDE, LT Added a new tool from

LT.

V1.05 21/12/2011 RACAI RACAI Updated

EMACC/PEXACC and

validated all other RACAI

documentation.

V1.06 21/12/2011 TILDE TILDE Updated version of the

NE/term mapping

workflow.

 Contract no. 248347

D2.6 V3.0 Page 5 of 164

Version Date Status Name of the

Author

(Partner)

Contributions Description/ Approval

Level

V1.07 22/12/2011 RACAI RACAI Added “Changes from

previous version” to all

RACAI tools. Checked

the description of the

parallel data workflow in

light of new

developments.

V1.08 28/12/2011 TILDE TILDE, CTS Updated ComMetric and

DictMetric sections.

V2.0 30/12/2011 TILDE TILDE Final formatting for the

second version of the

deliverable.

V2.01 15/03/2012 RACAI RACAI Added a diagram showing

how the tools are used

(reviewer comment no. 1

for D2.2 wrongly put

there)

V2.02 07/05/2012 TILDE TILDE, CTS,

USFD

Updated DictMetric,

Tilde’s Wrapper System

for CollTerm,

MapperUSFD and

NERTEWF.

V2.03 21/05/2012 TILDE TILDE, LT Updated P2G.

V2.04 01/06/2012 TILDE CTS Updated ComMetric.

V2.05 05/06/2012 RACAI RACAI Updated Parallel Data

Mining Workflow to

include LEXACC

V2.06 06/06/2012 RACAI RACAI Added LEXACC

documentation.

V2.07 07/06/2012 TILDE TILDE, LT Added Sisyphos-II to the

toolkit

V2.08 18/06/2012 TILDE TILDE,CTS Updated ComMetric and

document prepared for

final release

V3.0 28/06/2012 TILDE TILDE Version 3.0 released

EXECUTIVE SUMMARY

This document contains technical documentation of all important tools that have been

currently developed within the ACCURAT project. By using them, the users may expect to

obtain parallel texts, parallel terminology, general translation lexicons, and translated named

entities, all of which are useful as training data/resources for either SMT or Example-

bases/Rule-based MT. The documentation will help the interested user to install and run the

 Contract no. 248347

D2.6 V3.0 Page 6 of 164

applications individually or in the provided workflows: “parallel data mining from

comparable corpora” and “named entities/terminology extraction and mapping from

comparable corpora”. Considerable efforts have been put into making this documentation

accessible to the user with average computer skills and in implementing the tools’ interfaces

so that easy integration with future tools is ensured, together with facile tool manipulation.

This document describes tools included in the third version of the ACCURAT Toolkit. Most

of the tools have been improved since the first release of the toolkit. For improvements, refer

to the corresponding section under each individual tool’s documentation.

The ACCURAT Toolkit is stored at the ACCURAT repository and is freely available after

completing the registration form (http://www.accurat-project.eu/index.php?p=toolkit).

Table of Contents

Abbreviations .. 13

Summary of tools and workflows in the ACCURAT Toolkit 14

Introduction ... 15

1 General Use Case Scenarios ... 17

1.1 The “Parallel sentence/phrase mapping” workflow ... 17

1.1.1 Overview and purpose of the workflow .. 17

1.1.2 Changes from the previous version ... 18

1.1.3 Software dependencies and system requirements ... 18

1.1.4 Installation .. 18

1.1.5 Execution instructions... 19

1.1.6 Input/Output data formats ... 20

1.1.7 Integration with external tools .. 20

1.2 The “Named entity and term mapping” workflow ... 20

1.2.1 Overview and purpose of the workflow .. 20

1.2.2 Changes from previous version .. 22

1.2.3 Software dependencies and system requirements ... 22

1.2.4 Installation .. 23

1.2.5 Execution instructions... 23

1.2.6 Input/Output data formats ... 28

1.2.7 Integration with external tools .. 30

2 Tools to identify comparable documents and to extract parallel sentences

and/or phrases from them .. 32

2.1 ComMetric: a toolkit for measuring comparability of comparable documents................... 32

http://www.accurat-project.eu/index.php?p=toolkit

 Contract no. 248347

D2.6 V3.0 Page 7 of 164

2.1.1 Overview and purpose of the tool ... 32

2.1.2 Changes from previous version .. 34

2.1.3 Software dependencies and system requirements ... 35

2.1.4 Installation .. 35

2.1.5 Execution instructions... 36

2.1.6 Input/Output data formats ... 37

2.1.7 Integration with external tools .. 38

2.1.8 Licence .. 38

2.1.9 Contact .. 38

2.1.10 Useful references .. 38

2.2 DictMetric: a toolkit for measuring comparability of comparable documents 39

2.2.1 Overview and purpose of this toolkit .. 39

2.2.2 Changes from the previous version ... 39

2.2.3 Software dependencies and system requirements ... 40

2.2.4 Installation .. 40

2.2.5 Execution instructions... 40

2.2.6 Input/Output data formats ... 43

2.2.7 Integration with external tools .. 44

2.2.8 Licence .. 44

2.2.9 Contact .. 44

2.2.10 Useful references .. 44

2.3 Features extractor and document pair classifier ... 45

2.3.1 Overview and purpose of the tool ... 45

2.3.2 Changes from the previous version ... 46

2.3.3 Software dependencies and system requirements ... 47

2.3.4 Installation .. 47

2.3.5 Execution instructions... 47

2.3.6 Input/output data formats .. 52

2.3.7 Integration with external tools .. 53

2.3.8 Contact .. 54

2.4 EMACC: a textual unit aligner for comparable corpora using Expectation-Maximization 54

2.4.1 Overview and purpose of the tool ... 54

2.4.2 Changes from previous version .. 55

2.4.3 Software dependencies and system requirements ... 55

2.4.4 Installation .. 55

2.4.5 Execution instructions... 56

2.4.6 Input/Output data formats ... 58

2.4.7 Integration with external tools .. 59

 Contract no. 248347

D2.6 V3.0 Page 8 of 164

2.4.8 Contact .. 59

2.4.9 Useful references .. 59

2.5 PEXACC: a parallel phrase extractor from comparable corpora ... 60

2.5.1 Overview and purpose of the tool ... 60

2.5.2 Changes from previous version .. 60

2.5.3 Software dependencies and system requirements ... 61

2.5.4 Installation .. 62

2.5.5 Execution instructions... 62

2.5.6 Input/Output data formats ... 65

2.5.7 Integration with external tools .. 66

2.5.8 Contact .. 66

2.5.9 Useful references .. 66

2.6 A ME parallel sentence extractor tool ... 66

2.6.1 Overview and purpose of the tool ... 66

2.6.2 Changes from previous version .. 66

2.6.3 Dependencies and system requirements ... 67

2.6.4 Installation .. 67

2.6.5 Execution instructions... 67

2.6.6 Data formats and constraints ... 68

2.6.7 Integration with external tools .. 69

2.6.8 Contact .. 69

2.6.9 Useful references .. 69

2.7 LEXACC: fast parallel sentence mining from comparable corpora .. 69

2.7.1 Overview and purpose of the tool ... 69

2.7.2 Changes from previous version .. 70

2.7.3 Dependencies and system requirements ... 70

2.7.4 Installation .. 70

2.7.5 Execution instructions... 70

2.7.6 I/O data formats and constraints ... 71

2.7.7 Integration with external tools .. 72

2.7.8 Contact .. 72

2.7.9 Useful references .. 72

3 Tools for named entity recognition ... 73

3.1 TildeNER ... 73

3.1.1 Overview and purpose of the tool ... 73

3.1.2 Changes from previous version .. 75

3.1.3 Software dependencies and system requirements ... 76

3.1.4 Installation .. 77

 Contract no. 248347

D2.6 V3.0 Page 9 of 164

3.1.5 Execution instructions... 77

3.1.6 Input/Output data formats ... 100

3.1.7 Integration with external tools .. 105

3.1.8 Contact .. 107

3.1.9 Useful references .. 107

3.2 OpenNLP wrapper ... 108

3.2.1 Overview and purpose of the tool ... 108

3.2.2 Changes from previous version .. 108

3.2.3 Software dependencies and system requirements ... 108

3.2.4 Installation .. 108

3.2.5 Execution instructions... 109

3.2.6 Input/Output data formats ... 109

3.2.7 Contact .. 109

3.3 NERA1: Named Entity Recognition for English and Romanian ... 109

3.3.1 Overview and purpose of the tool ... 109

3.3.2 Changes from the previous version ... 110

3.3.3 Software dependencies and system requirements ... 110

3.3.4 Installation .. 110

3.3.5 Execution instructions... 110

3.3.6 Input/Output data formats ... 110

3.3.7 Contact .. 110

4 Tools for terminology extraction ... 111

4.1 Tilde’s wrapper system for CollTerm .. 111

4.1.1 Overview and purpose of the tool ... 111

4.1.2 Changes from previous version .. 113

4.1.3 Software dependencies and system requirements ... 113

4.1.4 Installation .. 114

4.1.5 Execution instructions... 114

4.1.6 Input/output data formats .. 124

4.1.7 Integration with external tools .. 128

4.1.8 Contact .. 128

4.1.9 Useful references .. 128

4.2 KEA wrapper ... 128

4.2.1 Overview and purpose of the tool ... 128

4.2.2 Changes from the previous version ... 128

4.2.3 Software dependencies and system requirements ... 129

4.2.4 Installation .. 129

4.2.5 Execution instructions... 129

 Contract no. 248347

D2.6 V3.0 Page 10 of 164

4.2.6 Input/Output data formats ... 129

4.2.7 Contact .. 129

4.3 CollTerm – a tool for collocation extraction .. 129

4.3.1 Overview and purpose of the tool ... 129

4.3.2 Changes from previous version .. 130

4.3.3 Software dependencies and system requirements ... 130

4.3.4 Installation .. 130

4.3.5 Execution instructions... 130

4.3.6 Input/Output data formats ... 132

4.3.7 Integration with external tools .. 136

4.3.8 Useful references .. 136

4.4 Terminology Extraction for English and Romanian .. 137

4.4.1 Overview and purpose of the tool ... 137

4.4.2 Changes from previous version .. 137

4.4.3 Software dependencies and system requirements ... 137

4.4.4 Installation .. 137

4.4.5 Execution instructions... 137

4.4.6 Input/Output data formats ... 138

4.4.7 Contact .. 138

5 Tools for named entity and terminology mapping ... 139

5.1 Multi-lingual named entity and terminology mapper .. 139

5.1.1 Overview and purpose of the tool ... 139

5.1.2 Changes from previous version .. 140

5.1.3 Software dependencies and system requirements ... 140

5.1.4 Installation .. 141

5.1.5 Execution instructions... 141

5.1.6 Input/Output data formats ... 141

5.1.7 Integration with external tools .. 142

5.1.8 Contact .. 142

5.2 NERA2: Language Independent Named Entity Mapping ... 142

5.2.1 Overview and purpose of the tool ... 142

5.2.2 Changes from the previous version ... 143

5.2.3 Software dependencies and system requirements ... 143

5.2.4 Installation .. 143

5.2.5 Execution instructions... 143

5.2.6 Input/Output data formats ... 143

5.2.7 Contact .. 143

5.3 A language independent terminology aligner .. 144

 Contract no. 248347

D2.6 V3.0 Page 11 of 164

5.3.1 Overview and purpose of the tool ... 144

5.3.2 Changes from the previous version ... 144

5.3.3 Software dependencies and system requirements ... 144

5.3.4 Installation .. 144

5.3.5 Execution instructions... 144

5.3.6 Input/Output data formats ... 145

5.3.7 Contact .. 145

5.3.8 Useful references .. 145

5.4 P2G: A tool to extract term candidates from aligned phrases .. 145

5.4.1 Overview and purpose of the tool ... 145

5.4.2 Changes from the previous version ... 146

5.4.3 Software dependencies and system requirements ... 146

5.4.4 Installation .. 146

5.4.5 Execution instructions... 146

5.4.6 Input / output data formats .. 147

5.4.7 Integration with external tools .. 148

5.4.8 Contact .. 148

5.4.9 Useful references .. 148

6 Other useful tools .. 150

6.1 A toolkit for text translation using Google translation API or Microsoft translation API 150

6.1.1 Overview and purpose of the tool ... 150

6.1.2 Changes from the previous version ... 150

6.1.3 Software dependencies and system requirements ... 150

6.1.4 Installation .. 150

6.1.5 Execution instructions... 150

6.1.6 Input/Output data formats ... 152

6.1.7 Integration with external tools .. 152

6.1.8 Contact .. 153

6.1.9 Useful references .. 153

6.2 DEACC: lexical dictionary extractor from comparable corpora ... 153

6.2.1 Overview and purpose of the tool ... 153

6.2.2 Changes from the previous version ... 153

6.2.3 Software dependencies and system requirements ... 154

6.2.4 Installation .. 154

6.2.5 Execution instructions... 154

6.2.6 Input/Output data formats ... 156

6.2.7 Integration with external tools .. 157

6.2.8 Contact .. 157

 Contract no. 248347

D2.6 V3.0 Page 12 of 164

6.2.9 Useful references .. 157

6.3 Sisyphos-II: MT-Evaluation tools ... 157

6.3.1 Overview and purpose of the tool ... 157

6.3.2 Changes from the previous version ... 158

6.3.3 Software dependencies ... 158

6.3.4 Installation .. 158

6.3.5 Execution instructions... 158

6.3.6 Integration with external tools .. 163

6.3.7 Contact .. 163

7 Conclusions .. 164

 Contract no. 248347

D2.6 V3.0 Page 13 of 164

Abbreviations

Table 1 Abbreviations used throughout this document.

Abbreviation Term/definition

API Application Programming Interface

MENER Maximum Entropy Named Entity Recognizer

MSD Morpho-Syntactic Descriptor

MT Machine Translation

NE Named Entity/Named entity Extraction

NER Named Entity Recognition

NERC Named Entity Recognition and Classification

NFS Network File System

NLP Natural Language Processing

NP Noun Phrase

POS Part of Speech

TE Terminology Extraction

TF/IDF Term Frequency/Inverse Document Frequency

SMT Statistical Machine Translation

SSH Secure Shell

WP Work Package

 Contract no. 248347

D2.6 V3.0 Page 14 of 164

Summary of tools and workflows in the ACCURAT Toolkit

Table 2 Summary of tools and workflows in the ACCURAT Toolkit.

Tool Name Operation Type Developed by Contact

Parallel data mining Workflow RACAI radu@racai.ro

NE/TE recognition and mapping Workflow Tilde marcis.pinnis@tilde.lv

ComMetric Document aligner CTS f.su@leeds.ac.uk

DictMetric Document aligner CTS f.su@leeds.ac.uk

Features extractor and document

pair classifier

Document aligner USFD m.paramita@shef.ac.uk

EMACC Document aligner RACAI radu@racai.ro

PEXACC Parallel textual unit

extractor

RACAI radu@racai.ro

LEXACC Parallel textual unit

extractor

RACAI danstef@racai.ro,

radu@racai.ro

ME Parallel Sentence Extractor Parallel textual unit

extractor

DFKI xiaojun.zhang@dfki.de

TildeNER NE recognizer Tilde marcis.pinnis@tilde.lv

OpenNLP wrapper NE recognizer USFD a.aker@dcs.shef.ac.uk

NERA1 NE recognizer RACAI danstef@racai.ro

Tilde’s wrapper for CollTerm Terminology extractor Tilde marcis.pinnis@tilde.lv

KEA wrapper Terminology extractor USFD a.aker@dcs.shef.ac.uk

CollTerm Terminology extractor FFZG nljubesi@gmail.com

TE for English and Romanian Terminology extractor RACAI danstef@racai.ro

Multi-lingual named entity and

terminology mapper

NE mapper, Term

mapper

USFD a.aker@dcs.shef.ac.uk

NERA2 NE mapper RACAI danstef@racai.ro

Language independent

terminology aligner

Term mapper RACAI danstef@racai.ro

P2G: A tool to extract term

candidates from aligned phrases

Term mapper LT g.thurmair@linguatec.de

Google and Bing Translation

Interface

MT system CTS f.su@leeds.ac.uk

DEACC Dictionary extractor RACAI elena@racai.ro

Sisyphos-II: MT-Evaluation

tools

Evaluation tools LT g.thurmair@linguatec.de

https://extranet.tilde.lv/accurat/Deliverables/radu@racai.ro
mailto:marcis.pinnis@tilde.lv
mailto:f.su@leeds.ac.uk
mailto:f.su@leeds.ac.uk
mailto:a.aker@dcs.shef.ac.uk
mailto:radu@racai.ro
mailto:radu@racai.ro
mailto:danstef@racai.ro
mailto:radu@racai.ro
mailto:xiaojun.zhang@dfki.de
mailto:marcis.pinnis@tilde.lv
mailto:a.aker@dcs.shef.ac.uk
mailto:danstef@racai.ro
mailto:marcis.pinnis@tilde
mailto:a.aker@dcs.shef.ac.uk
mailto:nljubesi@gmail.com
mailto:danstef@racai.ro
mailto:a.aker@dcs.shef.ac.uk
mailto:danstef@racai.ro
mailto:danstef@racai.ro
mailto:g.thurmair@linguatec.de
mailto:f.su@leeds.ac.uk
mailto:elena@racai.ro
mailto:g.thurmair@linguatec.de

 Contract no. 248347

D2.6 V3.0 Page 15 of 164

Introduction
Lack of sufficient linguistic resources for many languages and domains currently is one of the

major obstacles in further advancement of automated translation. The main goal of the

ACCURAT project is to research methods and techniques to overcome this obstacle by

finding, analysing and evaluating novel methods that exploit comparable corpora to generate

training data/resources for either SMT or Rule/Example-based MT.

This document describes a collection of software tools, developed within the ACCURAT

project according to the ACCURAT project’s methodology that will contribute towards

achieving the goals of the ACCURAT project. These tools (which will be collectively

referred to as the “ACCURAT Toolkit”) produce different types of data extracted from

comparable corpora that are useful to Statistical and Rule/Example-based Machine

Translation. We plan to improve/adapt the current versions of these tools as the project

progresses.

The types of MT-useful data that the ACCURAT Toolkit produces can be classified along

these lines (the Toolkit’s tools that implement the respective operations are :

 translation dictionaries extracted from comparable corpora; these dictionaries are

expected to supplement existing translation lexicons which are useful to both

statistical and rule/example-based MT. The tool that implements this operation is

DEACC (see section 6.2 of this document);

 translated terminology extracted (mapped) from comparable corpora; this type of

data is presented in a dictionary-like format and is expected to improve domain-

dependent translation (please refer to the ACCURAT Deliverable D2.3 “Report on

information extraction from comparable corpora” for more information on methods).

Tools that implement this operation are: the multi-lingual named entity and

terminology mapper (section 5.1) and the language independent terminology aligner

(section 5.3),

 translated named entities extracted (mapped) from comparable corpora; also

presented in a dictionary-like format, these lexicons are expected to improve the

parallel phrase extraction algorithms from comparable corpora and be useful by

themselves when actually used in translation (the problem of named entity mapping is

not trivial to solve since named entities may be transliterated and/or actually

translated either word by word or as idioms; please refer to the ACCURAT

Deliverable D2.3 “Report on information extraction from comparable corpora” for

more information on methods). Tools that implement this operation are: the multi-

lingual named entity and terminology mapper (section 5.1) and NERA2 (section 5.2);

 comparable document (and other textual unit types) alignment that will facilitate

the task of parallel phrase extraction by massively reducing the search space of such

algorithms (please refer to the ACCURAT Deliverable D2.2 for more information on

methods). Tools available for completing this operation are: DictMetric (section 2.2),

EMACC (section 2.4), ComMetric (section 2.1) and the feature-based document pair

classifier (section 2.3);

 Contract no. 248347

D2.6 V3.0 Page 16 of 164

 parallel sentence/phrase mapping from comparable corpora which aims at

supplying clean parallel data useful for statistical translation model learning (please

refer to the ACCURAT Deliverable D2.2 “Report on multi-level alignment of

comparable corpora” for more information on methods). Existing tools for this

operation are: LEXACC (section 2.7), PEXACC (section 2.5) and the ME parallel

sentence extractor (section 2.6).

In order to map terms and named entities bilingually, the ACCURAT Toolkit also provides

tools for detecting and annotating these types of expressions in a monolingual fashion. Thus,

the toolkit also contains:

 three NER applications: NERA1 (section 3.3), the OpenNLP NER Wrapper

(section 3.2) and the TildeNER tool (section 3.1);

 three terminology extraction applications: the KEA TE Wrapper (section 4.2), the

Tilde’s wrapper system for CollTerm (see section 4.1) and TE for English and

Romanian (section 4.4).

The purpose of this document is twofold:

1. to accurately describe the running environment, the system requirements, the external

dependencies and the setup of each individual tool so that a computer knowledgeable

user is able to install and run the tool;

2. to specify general use case scenarios (pipeline schemes) with which, the computer

knowledgeable user is able to obtain data of one of the previously mentioned types.

It is important to note that this document is intended to be useful to the rather advanced

computer user who generally knows how to install different applications in both Windows

and Linux environments and how to operate with command line tools. While the Windows

installations are generally automated, Linux installations sometimes require knowledge of

C/C++ compilation and tweaking. For tools requiring cluster operations, cluster elements

need to be installed by hand (e.g. adding user accounts, installing NFS servers and clients,

mounting NFS drives, installing password-less SSH connections, etc.).

The document at first defines the general use case scenarios (see section 1) and tools required

to run each of the workflows and then (sections 2.1 and further) describes each separate tool

in more detailed levels. In order for the user to successfully execute the general use case

scenarios, it is important to follow installation instructions of each separate tool and update

the workflow property files according to the installation paths of the user’s local system.

The tools described in this deliverable depend also on third party intellectual properties (tools

developed by other parties). All dependencies and usage restrictions of third party tools are

defined in the ACCURAT Deliverable D6.7 (Report on IPR of the project results). Every user

must acknowledge the restrictions and make sure that no third party IPR are violated.

This document describes tools included in the third version of the ACCURAT Toolkit.

Most of the tools have been improved since the first release of the toolkit. For improvements,

refer to the corresponding section under each individual tool’s documentation.

 Contract no. 248347

D2.6 V3.0 Page 17 of 164

1 General Use Case Scenarios

The toolkit provides in total two General Use Case Scenarios, which means that the toolkit is

compliant with its provided tools within the two pre-defined workflows. If the user requires

the toolkit to operate in other ways than the pre-defined use cases, he/she must be proficient

enough to work with each individual tool separately and, if necessary, also create integration

scripts between separate tools if the user’s desired use case is not covered by the supported

workflows.

1.1 The “Parallel sentence/phrase mapping” workflow

1.1.1 Overview and purpose of the workflow

This workflow aims at providing parallel textual unit mining (sentences and/or phrases) from

comparable corpora. The assumption that we have worked with is that, given two collections

of source and target documents, these documents need to first be aligned as to their

probability of containing parallel textual units so that the parallel textual unit extractors (CPU

intensive algorithms) do not have to search in each possible document pair. We think that by

doing the parallel data mining this way, we minimize the execution time and we also do not

miss many parallel pairs that could be found in pairs of documents not in our alignment list.

After the document alignment has been found, a generic parallel textual unit extractor can

search for parallel pairs only in the offered document pairs.

This toolkit contains four applications that implement the “generic document

aligner/document pair classifier” operation:

 EMACC (section 2.4) which outputs a list of document pairs, each with its alignment

(logarithmic) probability;

 ComMetric (section 2.1) which also outputs a list of document pairs along with

comparability scores using translation services such as Bing or Google;

 DictMetric (section 2.2) that assigns comparability scores between 0 and 1 to

document pairs using dictionary-based translation;

 Feature-based document pair classifier (section 2.3) which outputs a list of document

pairs, each with its detected comparability level: “parallel”, “strongly comparable”,

“weakly comparable” and “not related”.

and three applications that take over the role of a “parallel textual unit extractor” operation:

 PEXACC (section 2.5) which takes the output of any of the previous applications and

outputs a list of parallel sentences or phrases (depending on the configuration);

 LEXACC (section 2.7), a faster and enhanced version of PEXACC that uses document

alignments and a search engine to retrieve parallel sentences;

 MaxEnt Extract (section 2.6) which also takes the output of any of the previous

applications and outputs a list of parallel sentences.

 Contract no. 248347

D2.6 V3.0 Page 18 of 164

Figure 1 Graphical overview of the “Parallel sentence/phrase mapping” workflow

1.1.2 Changes from the previous version

For additional functionality:

 support for DictMetric comparability metric has been added;

 support for the parallel sentence pair extractor LEXACC has been added;

 support for multiple models for the MaxEnt Classifier has been added.

1.1.3 Software dependencies and system requirements

The parallel data mining workflow is provided as a self-contained kit prepared for running on

Windows 32-bit and 64-bit platforms (it will not run on Linux due to several required C++

applications/DLLs that have been compiled on a Windows XP Professional machine under

MinGW and that belong to this kit).

In order to be able to run the main application of the workflow, “ParallelDataMining.pl”, one

must be sure that Java
1
 and Perl

2
 are installed and that the paths of the executables are

present in the system’s environment variable “PATH” (thus, “echo %PATH%” should contain

the directories in which “perl” and “java” executables are to be found).

1.1.4 Installation

No other installation is necessary other than Perl and Java as mentioned in the previous

section.

1
 Download it from http://www.oracle.com/technetwork/java/javase/downloads/index.html

2
 Download it from http://www.activestate.com/activeperl/downloads

Target

Documents

Source

Documents

EMACC

ComMetric

DictMetric

Document

Pair

Classifier

LEXACC

PEXACC

MaxEnt

Classifier

snt1,snt3,0.7

snt8,snt2,0.2

snt7,snt5,0.6

…

Document

alignment

Sentence/phrase

alignment

Sentence/phrase

pairs with scores

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.activestate.com/activeperl/downloads

 Contract no. 248347

D2.6 V3.0 Page 19 of 164

1.1.5 Execution instructions

The application that implements this workflow is called “ParallelDataMining.pl” and it has

the following usage:

Usage:perl ParallelDataMining.pl

 --source <language> --target <language>

 --param CONFIG=path\to\config.prop

 --param DOCALIGN=<dictmetric|commetric|emacc|featclass>

 --param PHRMAP=<lexacc|pexacc|meextract>

 --input <path to source documents file>

 --input <path to target documents file>

 --output <path to the extracted textual units file>

where the command line switches have the following meanings:

 “--source” and “--target” specify the language of the source documents and the

language of the target documents respectively (may be given in full name or as 2

or 3 letter codes);

 “--param CONFIG” specifies the name of the custom property file. If it is not

given, the program will read the file “ParallelDataMining.prop” from the same

directory. This file contains configuration specific options for the tools involved

in the workflow (see the respective sections for details). If the user desires to

customize the workflow, this is the file to be modified;

 “--param DOCALIGN” specifies the application that will perform document

alignment. The user may choose between DictMetric (“dictmetric”), ComMetric

(“commetric”), EMACC (“emacc”), , or the Feature-based document pair

classifier (“featclass”);

 “--param PHRMAP” specifies the application which will handle the parallel

textual unit extraction. The user may choose between LEXACC (“lexacc”)

PEXACC (“pexacc”) or MaxEnt Extract (“meextract”);

 “--input” (both of them) specify the source and target document lists. The format

of the input files is the format of the input files DictMetric, EMACC, ComMetric

or the Feature-based Document Pair Classifier accept (see the respective

sections);

 “--output” specifies the name of the output file. The format of the output file is

the same as the format used by DictMetric, EMACC, ComMetric or the Feature-

based Document Pair Classifier (see the respective sections).

 Contract no. 248347

D2.6 V3.0 Page 20 of 164

Suppose that one would like to mine for parallel phrases from a comparable English-

Romanian corpus. The English (source) documents are listed in the “doclist-en.txt” file and

the Romanian (target) documents are listed in the “doclist-ro.txt”. Furthermore, suppose that

the user wants to use DictMetric for the document alignment task and LEXACC for the

parallel phrase extraction task (which we found that is the best combination when it comes to

accuracy vs. running time trade-off). Then, using “ParallelDataMining.pl”, the required

command is:

perl ParallelDataMining.pl \

 --source en --target ro \

 --param DOCALIGN=dictmetric --param PHRMAP=lexacc \

 --input doclist-en.txt --input doclist-ro.txt \

 --output result.txt

1.1.6 Input/Output data formats

The workflow will take as input lists of documents (in source and target languages) and will

produce at output a file containing the parallel pairs of textual units (sentences or phrases)

that have been extracted from the comparable corpus.

All the applications that are included in this workflow follow certain I/O data conventions:

 the I/O data for the “generic document aligner” (DictMetric, EMACC, ComMetric

and the Feature-based Document Pair Classifier all implement the “generic

document aligner”) may be sampled by observing the I/O data of EMACC (see

section 2.4.6);

 the I/O data for the “generic parallel textual unit extractor” (LEXACC, PEXACC

and the MaxEnt Extract implement the “generic parallel textual unit extractor”)

may be sampled by observing the I/O data of PEXACC (see section 2.5.6).

Consequently, the input data for the workflow is the input data for the generic document

aligner and the output data of the workflow is the output data of the generic parallel textual

unit extractor.

1.1.7 Integration with external tools

Other tools may be added to this workflow if they implement, in a compatible manner, the

“document alignment” or the “parallel textual unit extraction” operations. As long as the new

additions respect the format of I/O data presented in the previous section, they can be

incorporated into the workflow by the Perl-programmer user (that will need to edit to file

“ParallelDataMining.pl”).

1.2 The “Named entity and term mapping” workflow

1.2.1 Overview and purpose of the workflow

The Named entity and term mapping workflow (NERTEWF) provides means for multi-lingual

named entity or term mapping as well as named entity recognition and term extraction using

 Contract no. 248347

D2.6 V3.0 Page 21 of 164

tools developed within the ACCURAT project as well as tools integrated within the

workflow, but not developed within the ACCURAT project (for instance, OpenNLP named

entity recognition for English).

The workflow provides three different processing methods:

 Named entity extraction and/or named entity mapping using bilingual comparable

corpora (method “NE”);

 Terminology extraction and/or term mapping using bilingual comparable corpora

(method “T”);

 Term mapping using parallel data (as produced by PEXACC; see section 2.5;

method “PT”).

In the first two methods the workflow is built on the assumption that the user has collected

multi-lingual comparable corpora and has executed the document alignment operation by

using the Document Alignment wrapper (see section 1.2.5), that is, a requirement of these

methods is the comparable document pair list file that specifies comparability between two

document pairs.

In the third method the workflow is built on the assumption that the user has executed the

Parallel sentence/phrase mapping workflow (see section 1.1), that is, a requirement of this

workflow is the parallel data file (see section 2.5.6 for a format description).

The workflow has the following named entity recognition tools integrated:

 TildeNER (see section3.1);

 OpenNLP wrapper (see section 3.2);

 NERA1: Named Entity Recognition for English and Romanian (see section 3.3).

The workflow has the following terminology extraction tools integrated:

 Tilde’s wrapper system for CollTerm (see section 4.1);

 KEA wrapper (see section 4.2);

 Terminology Extraction for English and Romanian (see section 4.4).

The workflow has the following mapping tools integrated:

 Multi-lingual named entity and terminology mapper (see section 5.1);

 NERA2: Language Independent Named Entity Mapping (see section 5.2);

 A language independent terminology aligner (see section 5.3);

 P2G: A tool to extract term candidates from aligned phrases (see section 5.4).

 Contract no. 248347

D2.6 V3.0 Page 22 of 164

NERTEWF

NE Tagging

D2.6 Section 3.1
TildeNER
(TILDE)

D2.6 Section 3.2
OpenNLPWrapper

(USFD)

D2.6 Section 3.3
NERA1
(RACAI)

Term Tagging

D2.6 Section 4.1
Tilde’s Wrapper System

for CollTerm (TILDE)

D2.6 Section 4.3
CollTerm

(FFZG)

D2.6 Section 4.4
TerminologyExtraction

(RACAI)

NE Tagging & NE Mapping

Latvian/Lithuanian

English/Romanian
English

Term Tagging & Term Mapping

Skip for source and/or
target if required

D2.6 Section 4.2
KEATEWrapper

(USFD)

Latvian/Lithuanian/English

English English/Romanian

Skip for source and/or
target if required

Dependency

NE Mapping

D2.6 Section 5.2
NERA2
(RACAI)

D2.6 Section 5.1
MapperUSFD

(USFD)

Term Mapping

D2.6 Section 5.4
P2GACC

(LT)

D2.6 Section 5.1
MapperUSFD

(USFD)

D2.6 Section 5.3
TerminologyAligner

(RACAI)

Map English/German terms
using parallel data

Sk
ip

 m
ap

p
in

g
if

 r
eq

u
ir

ed

Sk
ip

 m
ap

p
in

g
if

 r
eq

u
ir

ed

Figure 2 Graphical overview of the “Named entity and term mapping” workflow

1.2.2 Changes from previous version

The second version of the Named entity and term mapping workflow includes updated

versions of all tools that have been updated. The workflow now includes also a third method

– term mapping using parallel data extracted by PEXACC, which is done by the tool P2G

(see section 5.4 for more details). The updated version also contains “easy to use” testing

scripts (“RUN” scripts), which allow testing whether all parts of the workflow work on the

user’s local system.

1.2.3 Software dependencies and system requirements

The workflow contains internal tool dependencies (for instance, “Tagger.exe” for Latvian and

Lithuanian POS-tagging in TildeNER and Tilde’s wrapper system for CollTerm), therefore,

the only software dependencies are runtime environments:

 Java Runtime Environment (version 1.6.0);

 Perl (Windows - Strawberry Perl v5.12.1; Linux – Perl v5.10.1);

 .Net Framework 4.0 (Windows), Mono 2.10 (Linux);

 Python (Windows – Python v2.7.1; Linux – Python v2.6.5).

The user must be sure that Java, Perl, Python and the .NET Framework (or Mono on Linux)

are installed and that the executable paths are present in the system's environment variable

“PATH” (thus, the string returned by “echo %PATH%” should contain the directories in

which “perl”, “java” and “python” executables are to be found).

 Contract no. 248347

D2.6 V3.0 Page 23 of 164

The workflow is built as a tagging and extraction workflow and does not involve system

training; therefore the system requirements may be lower than specified for separate tools,

which also provide training options:

 A Linux or Windows (XP or newer) operating system;

 1GB or more RAM (for the third method, the Java heap size should be larger than

512MB);

 Intel® Pentium® 4 CPU 3.00GHz, 2992 Mhz, 1 Core(s), 2 Logical Processors or

faster.

1.2.4 Installation

The workflow requires no installation. Simply extract the

“D2_6_Section_1_2_NERTEWF.zip” contents in a directory where the user has

read/write/execute permissions and run the workflow as specified further.

The workflow currently supports only Latvian, Lithuanian, English and Romanian language

named entity recognition and term extraction in the first two methods and German and

English term mapping in the third method. To add support for other language named entity

recognition, the user has to integrate his tool in the workflow following the guidelines in

section 1.2.7.

The Multi-lingual named entity and terminology mapper supports all language pair NE/Term

mapping, but the NERA2 and the Language independent terminology aligner tools currently

support only “EN-RO” pair named entity mapping. For additional support the user requires

GIZA++ translation lexicons in the form “[SRCL]_[TRGL]” placed in the “RACAI_NERA2”

and also in the “RACAI_TA” directories. “[SRCL]” is the source document language code

defined with two lowercase characters (for instance, “lv”, “lt”, “en”, “ro”, etc.) and the

“[TRGL]” is the target document language code defined with two lowercase characters.

1.2.5 Execution instructions

As mentioned in the overview, the workflow requires a document pair list file. To obtain the

document pairing, the user may employ the DocumentAligner wrapper that is offered

together with this workflow. A second alternative would be for the user to generate (by some

other means) his/her own document pair list file.

The DocumentAligner wrapper is a Perl application that will standardize the calling interface

of all document aligner applications present in this toolkit into the interface of a “generic

document aligner” tool. The applications that are included in this wrapper are: EMACC

(section 2.4), Feature-based Document Pair Classifier (section 2.3), ComMetric (section 2.1)

and DictMetric (section 2.2).

 Contract no. 248347

D2.6 V3.0 Page 24 of 164

The DocumentAligner wrapper is implemented by the Perl script “DocumentAligner.pl”.

The usage of this script is as follows:

Usage: DocumentAlignment.pl

 --source <language> --target <language>

 --param CONFIG=path\to\config.prop

 --param DOCALIGN=<commetric|dictmetric|emacc|featclass>

 --input <path to source documents file>

 --input <path to target documents file>

 --output <path to the aligned documents file>

where

 “--source” and “--target” specify the language of the source documents and the

language of the target documents respectively (may be given in full name or as 2

or 3 letter codes);

 “--param CONFIG” specifies the name of the custom property file. If it is not

given, the program will read the file “DocumentAligner.prop” from the same

directory. This file contains configuration specific options for the tools involved

in the wrapper (see the respective sections for details);

 „--param DOCALIGN” specifies the application that will perform document

alignment. The user may choose between EMACC (“emacc”), ComMetric

(“commetric”), DictMetric (“dictmetric”) or the Feature-based document pair

classifier (“featclass”);

 “--input” (both of them) specify the source and target document lists;

 “--output” specifies the name of the output file.

The format of the Input/Output data of the wrapper is consistent with the format of the

Input/Output data for all the applications that the wrapper encapsulates. For an example,

please take a look at section 2.4.6 of the EMACC document aligner.

To execute named entity or terminology mapping on all document pairs from a given aligned

document pair list the user has to execute the following command line:

perl EntityMappingWorkflow.pl --source [Source Language] --target [Target

Language] --param "propFile=[Property File Path]" --param method=[Mapping

and Tagging Method NE|T|PT] --param parsedSource=[Source Parsed? 0|1] --

param parsedTarget=[Target Parsed? 0|1] --param skipMapping=[Skip Mapping?

0|1] --input [Document Pair List File Path] --output [Mapped NE/Term File

Path]

The script requires the following parameters in any order (the elements in brackets “[…]”):

 “--source [Source Language]” – the source (first corpus) document language (for

instance, “LV”, “LT”, “EN”, etc.). This parameter is mandatory.

 “--target [Target Language]” – the target (second corpus) document language

(for instance, “LV”, “LT”, “EN”, etc.). This parameter is mandatory.

 Contract no. 248347

D2.6 V3.0 Page 25 of 164

 “--param "propFile=[Property File Path]"” – the path to the workflow property

file. The format is described in section 1.2.6.1. This parameter is optional and if

not given the default property file („NE-TermWorkflowProperties.prop”) will be

used.

 “--param method=[Mapping and Tagging Method NE|T|PT]” – the tagging and

mapping method. For NE tagging and mapping use the value “NE”. For term

tagging and mapping use the value “T”. For term mapping using a parallel data

file use the value “PT”. This parameter is mandatory.

 “--param parsedSource=[Source Parsed? 0|1]” – specifies whether the source

language documents are already tagged for named entities or terms according to

the method (“0” – are not tagged; “1” – are tagged). This parameter is optional

and if not given a default value “0” will be used. The parameter is not used if the

method “PT” is used.

 “--param parsedTarget=[Target Parsed? 0|1]” – specifies whether the target

language documents are already tagged for named entities or terms according to

the method (“0” – are not tagged; “1” – are tagged). This parameter is optional

and if not given a default value “0” will be used. The parameter is not used if the

method “PT” is used.

 “--param skipMapping=[Skip Mapping? 0|1]” – specifies whether mapping

should be skipped after tagging (“0” – should be executed; “1” – should be

skipped). This parameter is optional and if not given a default value “0” will be

used. The parameter is not used if the method “PT” is used.

 “--input [Document Pair List File Path]” – the path to the aligned document pair

list file (if the method is either „NE” or „T”). The format is described in section

1.2.6.2. If the method “PT” is used, the input file should be the parallel

sentence/phrase file (see section 2.5.6 for a format description). This parameter is

mandatory.

 “--output [Mapped NE/Term File Path]” – the file path to the file where mapping

results should be saved (if mapping will be executed). The format is described in

section 1.2.6.4. This parameter is mandatory.

An example execution call sequence is as follows:

perl "C:\RuntimeTempDir\NERTEWF\EntityMappingWorkflow.pl" --source EN --

target LV --param "propFile=C:\RuntimeTempDir\NERTEWF\NE-

TermWorkflowProperties.prop" --param method=NE --param parsedSource=0 --

param parsedTarget=0 --input "C:\RuntimeTempDir\NERTEWF_TEMP\EN_LV.txt" --

output "C:\RuntimeTempDir\NERTEWF_TEMP\EN_LV_USFD_NE_OUT.txt"

An example of a call with the least arguments is as follows:

perl "C:\RuntimeTempDir\NERTEWF\EntityMappingWorkflow.pl" --source EN --

target LV --param method=NE --input

"C:\RuntimeTempDir\NERTEWF_TEMP\EN_LV.txt" --output

"C:\RuntimeTempDir\NERTEWF_TEMP\EN_LV_USFD_NE_OUT.txt"

 Contract no. 248347

D2.6 V3.0 Page 26 of 164

In order to provide assistance in execution of the scripts the NE/Term mapping workflow

package contains predefined Bash (“sh”; for Linux) and Batch (“bat”; for Windows) scripts in

the form “RUN_###.bat” or “RUN_###.sh”. As the possible execution scenarios depend on

the user’s requirements, the scripts provide functionality for only a limited number of use

cases. Input data is taken from the “TEST” subdirectory and individual tool resources

(models, property files, etc.) are taken from the corresponding tool subdirectories in the

NERTEWF package. All output data is saved to the “TEST” directory.

The provided scripts are as follows:

 NE-tagging and NE mapping of plaintext documents:

o For the English – Lithuanian document pairs:

 RUN_EN-LT_Plaintext_NE_Mapping.bat (Windows)

 RUN_EN-LT_Plaintext_NE_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_lt_plain_pairs_in.txt”

and the mapped NE pairs are saved in „./TEST/en_lt_NE_pairs_out.txt”.

o For the English – Latvian document pairs:

 RUN_EN-LV_Plaintext_NE_Mapping.bat (Windows)

 RUN_EN-LV_Plaintext_NE_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_lv_plain_pairs_in.txt”

and the mapped NE pairs are saved in „./TEST/en_lv_NE_pairs_out.txt”.

o For the English – Romanian document pairs (mapping is done with MapperUSFD):

 RUN_EN-RO_Plaintext_NE_Mapping.bat (Windows)

 RUN_EN-RO_Plaintext_NE_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_ro_plain_pairs_in.txt”

and the mapped NE pairs are saved in „./TEST/en_ro_NE_pairs_out.txt”.

 Term-tagging and term mapping of plaintext documents:

o For the English – Lithuanian document pairs:

 RUN_EN-LT_Plaintext_T_Mapping.bat (Windows)

 RUN_EN-LT_Plaintext_T_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_lt_plain_pairs_in.txt”

and the mapped term pairs are saved in „./TEST/en_lt_T_pairs_out.txt”.

o For the English – Latvian document pairs:

 RUN_EN-LV_Plaintext_T_Mapping.bat (Windows)

 RUN_EN-LV_Plaintext_T_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_lv_plain_pairs_in.txt”

and the mapped term pairs are saved in „./TEST/en_lv_T_pairs_out.txt”.

o For the English – Romanian document pairs (mapping is done with MapperUSFD):

 RUN_EN-RO_Plaintext_T_Mapping.bat (Windows)

 RUN_EN-RO_Plaintext_T_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_ro_plain_pairs_in.txt”

and the mapped term pairs are saved in „./TEST/en_ro_T_pairs_out.txt”.

 NE mapping of MUC-7 annotated documents (in this scenario NE tagging is

skipped as the NERTEWF is called on pre-tagged documents):

 Contract no. 248347

D2.6 V3.0 Page 27 of 164

o For the English – Lithuanian document pairs:

 RUN_EN-LT_MUC7-tagged_NE_Mapping.bat (Windows)

 RUN_EN-LT_MUC7-tagged_NE_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_lt_muc7_pairs_in.txt”

and the mapped NE pairs are saved in „./TEST/en_lt_muc7_NE_pairs_out.txt”.

o For the English – Latvian document pairs:

 RUN_EN-LV_MUC7-tagged_NE_Mapping.bat (Windows)

 RUN_EN-LV_MUC7-tagged_NE_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_lv_muc7_pairs_in.txt”

and the mapped NE pairs are saved in „./TEST/en_lv_muc7_NE_pairs_out.txt”.

o For the English – Romanian document pairs:

 Mapping NEs with the NERA2 NE mapping tool:

 RUN_EN-RO_MUC7-tagged_RACAI_NE_Mapping.bat (Windows)

 RUN_EN-RO_MUC7-tagged_RACAI_NE_Mapping.sh (Linux)

 The input document pair list file is taken from

„./TEST/en_ro_muc7_pairs_in.txt” and the mapped NE pairs are saved in

„./TEST/en_ro_muc7_RACAI_NE_pairs_out.txt”.

 Mapping NEs with the MapperUSFD NE mapping tool:

 RUN_EN-RO_MUC7-tagged_USFD_NE_Mapping.bat (Windows)

 RUN_EN-RO_MUC7-tagged_USFD_NE_Mapping.sh (Linux)

 The input document pair list file is taken from

„./TEST/en_ro_muc7_pairs_in.txt” and the mapped NE pairs are saved in

„./TEST/en_ro_muc7_USFD_NE_pairs_out.txt”.

 Term mapping of term-tagged documents (in this scenario term tagging is skipped

as the NERTEWF is called on pre-tagged documents):

o For the English – Lithuanian document pairs:

 RUN_EN-LT_term-tagged_T_Mapping.bat (Windows)

 RUN_EN-LT_term-tagged_T_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_lt_term_pairs_in.txt”

and the mapped term pairs are saved in „./TEST/en_lt_term_T_pairs_out.txt”.

o For the English – Latvian document pairs:

 RUN_EN-LV_term-tagged_T_Mapping.bat (Windows)

 RUN_EN-LV_term-tagged_T_Mapping.sh (Linux)

 The input document pair list file is taken from „./TEST/en_lt_term_pairs_in.txt”

and the mapped term pairs are saved in „./TEST/en_lt_term_NE_pairs_out.txt”.

o For the English – Romanian document pairs:

 Mapping terms with the RACAI TA term mapping tool:

 RUN_EN-RO_term-tagged_RACAI_T_Mapping.bat (Windows)

 RUN_EN-RO_term-tagged_RACAI_T_Mapping.sh (Linux)

 The input document pair list file is taken from

„./TEST/en_ro_term_pairs_in.txt” and the mapped term pairs are saved in

„./TEST/en_ro_term_RACAI_T_pairs_out.txt”.

 Mapping terms with the MapperUSFD term mapping tool:

 Contract no. 248347

D2.6 V3.0 Page 28 of 164

 RUN_EN-RO_term-tagged_USFD_T_Mapping.bat (Windows)

 RUN_EN-RO_term-tagged_USFD_T_Mapping.sh (Linux)

 The input document pair list file is taken from

„./TEST/en_ro_term_pairs_in.txt” and the mapped term pairs are saved in

„./TEST/en_ro_term_USFD_T_pairs_out.txt”.

 Term mapping from parallel sentences/phrases:

o For the English – German language:

 RUN_EN-DE_PEXACC_RES_T_Mapping.bat (Windows)

 RUN_EN-DE_PEXACC_RES_T_Mapping.sh (Linux)

 The input parallel data document is taken from

„./TEST/en_de_phrtest_pexacc_in.txt” and the mapped term pairs are saved in

„./TEST/en_de_phrtest_pexacc_tabsep_out.txt”.

1.2.6 Input/Output data formats

1.2.6.1 The NE/Term mapping property file format

The workflow makes use of a property file to configure the tools included in the workflow. A

property file contains one parameter per line (comments are allowed only at the beginning of

each line starting with the symbol “#”;empty lines are also allowed). Each property starts

with an identifier, which is followed by an equation symbol “=”. The value of the property is

everything (trimming both end whitespaces) that is after the equation symbol.

All supported properties are:

 “MapperToUse” – specifies, which mapping tool to use. Possible values are:

“USFD” for Multi-lingual named entity and terminology mapper and “RACAI”

for NERA2: Language Independent Named Entity Mapping and the Language

independent terminology aligner. The default value is “USFD”.

 “DefaultEnNER” – specifies, which English NER tool to use. Possible values

are: “USFD” for OpenNLP wrapper and “RACAI” for NERA1: Named Entity

Recognition for English and Romanian. The default value is “USFD”.

 “DefaultEnTE” – specifies, which English TE tool to use. Possible values are:

“USFD” for the KEA wrapper, “RACAI” for the Terminology Extraction for

English and Romanian, and “TILDE_FFZG” for Tilde’s Wrapper System for

CollTerm (the user will need to manually integrate TreeTagger following

guidelines described in section 3.1.5.5 as its licence does not permit bundling it

within any other solution). The default value is “USFD”.

 “LV_RefDefString” – specifies the refinement order definition string used in

TildeNER for Latvian named entity recognition (for further information see

section 3.1.5.4.3). The default value is “L N S R_0.7 C T_0.90 A” (achieves

higher precision with minimal recall loss).

 “LT_RefDefString” - specifies the refinement order definition string used in

TildeNER for Lithuanian named entity recognition (for further information see

 Contract no. 248347

D2.6 V3.0 Page 29 of 164

section 3.1.5.4.3). The default value is “L N S R_0.7 C T_0.90 A” (achieves

higher precision with minimal recall loss).

 “RACAINERA2_MoreAnnot” – specifies, whether the input documents to the

NERA2 tool contain any XML tags other than the valid term tags

(“<TENAME>”). If “TRUE”, the data within the tags will be ignored. If

“FALSE”, the tags will be treated as text. The default value is “FALSE”.

 “RACAITermAligner_MoreAnnot” – specifies, whether the input documents to

the NERA2 tool contain any XML tags other than the valid term tags

(“<TENAME>”). If “TRUE”, the data within the tags will be ignored. If

“FALSE”, the tags will be treated as text. The default value is “FALSE”.

 “PhrT2Glo_Thr” – specifies the threshold of parallel data entries that are to be

considered for term mapping if the third method (“PT”) is used.

 “MapperUSFD_Thr” – specifies the threshold for valid term and named entity

pairs in the Multi-lingual named entity and terminology mapper.

 “MapperUSFD_UseDictForTerms” – specifies whether to use (value “1”) the

dictionary based term mapping in the Multi-lingual named entity and terminology

mapper or not (value “0”).

The default property file “NE-TermWorkflowProperties.prop” is given in the “NERTEWF”

directory of the “D2_6_Section_1_2_NERTEWF.zip” file. Do not delete this file as it is the

default property file and is used by the workflow if no other property file is given.

1.2.6.2 The document pair list file format

For the input document pair list file format refer to the output data of ComMetric: a toolkit

for measuring comparability of comparable documents described in section 2.1.6.

1.2.6.3 The parallel data file format

For the input parallel data file format refer to the output of PEXACC described in section

2.5.6.

1.2.6.4 Mapped named entity or term file format.

For the output format of each of the mapping tools refer to:

 Section 5.1.6 of Multi-lingual named entity and terminology mapper. A sample

output (for a language pair “EN_LV”) is as follows:

Apple Inc. Apple Inc 0.9056779744930279

Ross Bell Ross Bells 0.9056779744930279

Florida Floridas 0.8989061958123105

Roma Romas 0.8415685232306558

Guam Guama 0.8415685232306558

 Contract no. 248347

D2.6 V3.0 Page 30 of 164

 Section 5.2.6 of NERA2: Language Independent Named Entity Mapping. A

sample output (for a language pair “EN_RO”) is as follows:

saturn saturn 1

venus venus 1

cristian mungiu cristian mungiu 1

romania românia 0,890909

romania româniei 0,8

transylvania transilvania 0,711538461538462

hungary ungaria 0,895397

 Section 5.3.6 of the Language independent terminology aligner. A sample output

(for a language pair “EN_RO”) is as follows:

Confederacy confederație 0,696969696969697

Confederacy Confederation 0,742424242424242

Franco-American Spaniol-American 0,64375

prairie prerie 0,75

colonization Colonizatorii 0,602564102564103

colonization colonizatori 0,721153846153846

colonization colonizatorii 0,682692307692308

federalist federație 0,633333333333333

independents Independență 0,721153846153846

1.2.7 Integration with external tools

If the user wishes to add additional Languages to the supported language list, the user has to:

 Be able to write Perl scripts;

 Be in a possession of a named entity recognition and (or) terminology extraction

tool that accepts a tab-separated document pair list where each line contains two

entries – the input document that has to be tagged and the output file where the

results should be saved. A sample format is given below:

[Plaintext input file 1] [Tagged output file 1]

…

[Plaintext input file N] [Tagged output file N]

The output of the user’s named entity recognizer has to be compliant with the MUC-7

annotation format described in section 3.1.6.2. The output of the user’s terminology

extraction tool has to be compliant with the format also described in section 3.1.6.2.

If the user’s system does not support such I/O data formats, the user will have to write a

wrapper system that:

 pre-processes the input data so that the user’s system can understand it

 post-processes the output data so that the workflow’s mapping tools can

understand it.

Then the user has to add a new “elsif” script section for his language in methods

“TagNamedEntities” for NER and “TagTerms” for TE.

 Contract no. 248347

D2.6 V3.0 Page 31 of 164

The format of the section is as follows:

elsif ($language eq "[LANGUAGE_CODE]")

{

 $execCommand = "cd \"[TOOL_DIRECTORY]\" && [COMMAND_LINE_WITH_$fileList]

\"".$fileList."\"";

}

The user has to define:

 A two lowercase character language code (“[LANGUAGE_CODE]”). If the

method “GetTwoCharCode” does not contain the required language mapping to a

two lowercase character code, the user must add a new mapping.

 The path to the directory where the user’s NER or TE tool is located

(“[TOOL_DIRECTORY]”).

 The command line (“[COMMAND_LINE_WITH_$fileList]”) to execute the

user’s tool as a Perl string. The command line has to contain the “$fileList”

variable (the I/O file list for tagging) as an argument.

 Contract no. 248347

D2.6 V3.0 Page 32 of 164

2 Tools to identify comparable documents and to extract

parallel sentences and/or phrases from them

This section covers the tools that classify or rank document pairs according to their

comparability levels and tools which, given a list of comparable document pairs, will attempt

to extract parallel textual units (sentences or phrases) from each comparable document pair.

The tools included in this section of the ACCURAT toolkit that deal with document pairing

are:

 ComMetric: a toolkit for measuring comparability of comparable documents

(developed by CTS; see section 2.1).

 DictMetric: a toolkit for measuring comparability of comparable documents

(developed by CTS; see section 2.2).

 Features extractor and document pair classifier (developed by USFD; see section

2.3).

 EMACC: a textual unit aligner for comparable corpora using Expectation-

Maximization (developed by RACAI; see section 2.4).

The tools that deal with parallel sentence/phrase extraction included in this section are:

 PEXACC: a parallel phrase extractor from comparable corpora (developed by

RACAI; see section 2.5).

 A toolkit for Multi-level Parallel Data Extraction (developed by DFKI; see

section 2.6)

 LEXACC: fast parallel sentence mining from comparable corpora (developed by

RACAI; see section 2.7)

2.1 ComMetric: a toolkit for measuring comparability of

comparable documents

2.1.1 Overview and purpose of the tool

ComMetric is designed to measure the comparability levels of document pairs via a cosine

measure. The toolkit can compute comparability scores for both monolingual document pairs

and bi-lingual document pairs (via using our translation toolkit). Also, given the fact that for

some under-resourced languages it is usually difficult to obtain satisfactory language

processing resources or tools (e.g., POS taggers, machine-readable lexicons, stop word lists,

word stemmers and lemmatizers), ComMetric at first translates monolingual documents into

English (if the MT system, which can translate the non-English texts into English, is

available) and then measures the comparability levels utilizing the rich language resources for

English.

ComMetric contains two modules: text translation and the cosine-based comparability

computation.

 Contract no. 248347

D2.6 V3.0 Page 33 of 164

2.1.1.1 Text translation

The translation toolkit allows users to translate text collections from a source language to a

target language by using the available Google translation java API, Microsoft Bing translation

java API or DFKI's MT-serverland. Currently the Google translation API supports 63

languages and the Bing Translation API supports 36 languages. The supported languages are

listed as below.

Supported languages by Google Translation API:

AUTO_DETECT AFRIKAANS ALBANIAN AMHARIC ARABIC ARMENIAN AZERBAIJANI BASQUE

BELARUSIAN BENGALI BIHARI BULGARIAN BURMESE CATALAN CHEROKEE CHINESE

CHINESE_SIMPLIFIED CHINESE_TRADITIONAL CROATIAN CZECH DANISH DHIVEHI DUTCH

ENGLISH ESPERANTO ESTONIAN FILIPINO FINNISH FRENCH GALICIAN GEORGIAN GERMAN

GREEK GUARANI GUJARATI HEBREW HINDI HUNGARIAN ICELANDIC INDONESIAN

INUKTITUT IRISH ITALIAN JAPANESE KANNADA KAZAKH KHMER KOREAN KURDISH KYRGYZ

LAOTHIAN LATVIAN LITHUANIAN MACEDONIAN MALAY MALAYALAM MALTESE MARATHI

MONGOLIAN NEPALI NORWEGIAN ORIYA PASHTO PERSIAN POLISH PORTUGUESE PUNJABI

ROMANIAN RUSSIAN SANSKRIT SERBIAN SINDHI SINHALESE SLOVAK SLOVENIAN SPANISH

SWAHILI SWEDISH TAJIK TAMIL TAGALOG TELUGU THAI TIBETAN TURKISH UKRANIAN

URDU UZBEK UIGHUR VIETNAMESE WELSH YIDDISH

Supported languages by Bing Translation API:

AUTO_DETECT ARABIC BULGARIAN CHINESE_SIMPLIFIED CHINESE_TRADITIONAL CZECH

DANISH DUTCH ENGLISH ESTONIAN FINNISH FRENCH GERMAN GREEK HATIAN_CREOLE

HEBREW HUNGARIAN INDONESIAN ITALIAN JAPANESE KOREAN LATVIAN LITHUANIAN

NORWEGIAN POLISH PORTUGUESE ROMANIAN RUSSIAN SLOVAK SLOVENIAN SPANISH

SWEDISH THAI TURKISH UKRANIAN VIETNAMESE

The translation toolkits support two different manners of translation. For each translation call,

you can send either a text string, or a string array for translation. Technically, in the following

format:

Manner 1: String result=Translate.execute(String text, SourceLanguage,

TargetLanguage)

Manner 2: String[] result=Translate.execute(String[] text, SourceLanguage,

TargetLanguage)

By default, the toolkit will call Manner 1 unless the user specifies using string array

translation (Manner 2).

Also, the toolkit supports two different inputs of source documents which will be translated.

(1) The uses can put all the documents to be translated in a directory, and the toolkit will read

all the documents from that directory for translation. (2) Sometimes the documents to be

translated are from different directories, in this case the user can provide a file which lists all

the documents to be translated with full path, and the toolkit will read the documents using

this file, and precede the translation. Finally, apart from outputting the translated documents,

a file which lists the full path of each translated document will be generated as well.

 Contract no. 248347

D2.6 V3.0 Page 34 of 164

Supported language pairs by the DFKI's MT-serverland are as follows:

 English-Croatian (EN-HR) / Croatian-English (HR-EN)

 English-Estonian (EN-ET)

 English-Greek (EN-EL)

 English-Latvian (EN-LV; translated from English into Latvian)

 English-Lithuanian (EN-LT),

 English-Romanian (EN-RO) / Romanian-English (RO-EN)

 English-Slovenian (EN-SL) / Slovenian-English (SL-EN)

 German-English (DE-EN)

 German-Romanian (DE-RO) / Romanian-German (RO-DE)

 Greek-Romanian (EL-RO) / Romanian-Greek (RO-EL)

 Latvian-Lithuanian (LV-LT)

 Lithuanian-Romanian (LT-RO)

2.1.1.2 Comparability computation

The toolkit at first calls the Standford CoreNLP tool (available at

http://nlp.stanford.edu/software/corenlp.shtml) for POS-tagging and word tokenization. Then

JWI (MIT Java WordNet Interface) is called for WordNet-based stemming. After word

stemming, the stemmed text are converted into lexical vectors. The comparability metric

takes 4 different types of features into account:

(1) Lexical features: the stemmed lexical vectors with stop-word filtering;

(2) Structural feature: number of sentences and number of content word (using the POS-

tagged result) of each documents;

(3) Keyword feature: Top-20 keywords (based on TFIDF weight) of each document;

(4) Named entity feature: named entities of each document by using Stanford NER

module in the CoreNLP tool.

Finally, the toolkit applies cosine similarity measure on lexical features, keyword features,

and named entity features individually, and then uses a weighted average strategy to combine

these cosine scores into the comparability metric. Document pairs with a comparability score

>=threshold (a predefined value, between 0-1) are returned as output.

2.1.2 Changes from previous version

DFKI’s MT-serverland API has been included as a new text translation option (apart from

Google and Bing APIs) in the metric.

The modules of keyword extraction, named entity recognition, structure feature generation,

and the linear combination of the four type of feature (lexical feature, document structure,

keywords, named entities) have been integrated into the new version of ComMetric.

The current toolkit provides two different forms executable files: ComMetric.jar and

ComMetric-solo.jar. ComMetric-solo.jar can be used as API and the external APIs (google-

api-translate-java-0.95.jar, json-20090211.jar, microsoft-translator-java-api-0.4-updated-

jar-with-dependencies.jar, edu.mit.jwi_2.1.5_jdk.jar and stanford-corenlp-2012-05-22.jar) it

 Contract no. 248347

D2.6 V3.0 Page 35 of 164

calls are put separately in the same directory (NOTE THAT these external APIs should be

put in the same directory as ComMetric-solo.jar so that ComMetric-solo.jar can be executed

properly). In ComMetric.jar, all external APIs have been included during its export process

so that the users can use ComMetrics.jar directly without dealing with the external APIs it

calls.

2.1.3 Software dependencies and system requirements

(1) WordNet: the toolkit uses a WordNet-based word stemmer. WordNet is available at

http://wordnet.princeton.edu/wordnet/download/current-version/, the latest versions are:

WordNet 2.1 for Windows, and WordNet 3.0 for Unix-like systems.

(2) JWI: the toolkit uses MIT Java Wordnet Interface (JWI, available at

http://projects.csail.mit.edu/jwi/) to access the WordNet-based word stemming. Not like the

traditional word stemmer which return the stem form of a word (the stems are usually not

words), the WordNet-based stemmer will check if possible stems are in the WordNet. If so, it

will only return these WordNet-based stems; and if not it will return the traditional stem form.

Since most of the stems are words, the WordNet-based stemming is like a simple word

lemmatization tool (which returns lemma of a given word).

(3) Stanford CoreNLP toolkit: the toolkit uses the Stanford CoreNLP (available at

http://nlp.stanford.edu/software/corenlp.shtml) for POS-tagging, sentence splitting, word

tokenization and named entity recognition.

(4) System platform: platform independent (Windows, Linux or Mac)

(5) JRE: JRE 1.6.0 (lower version should also work)

(6) Stop word list: a folder, which contains stop word lists for German, Greek, English,

Estonian, Croatian, Lithuanian, Latvian, Romanian and Slovenian, is already included in the

toolkit

(7) Python: DFKI's translation API for accessing MT-serverland is in the form of Python

script, thus Python should be installed and set in the system environment variables. The

version of Python should be 2.6 or higher, as the used modules such as “httplib2” or “json”

are not available at lower version (e.g., “json” is only available in Python 2.6 and later).

(8) Internet access: The system uses Google and Bing translation APIs for the text

translation. Given that both Google and Bing translation API need to send request to remote

servers for translation, the user should ensure that Internet is stably connected.

(9) Training model of POS-tagging and NER: As the Stanford CoreNLP tool use supervise

learning approach for POS-tagging and named entity recognition, the training models

(“left3words-distsim-wsj-0-18.tagger”, and “conll.4class.distsim.crf.ser.gz”) should be

included in the toolkit so that they can be loaded into system by default for POS-tagging and

NER.

2.1.4 Installation

(1) WordNet installation: download the latest WordNet version (Windows or Unix-like

system) and install it. Record the path to the root of the WordNet installation directory (for

example, “/usr/local/WordNet-3.0” for Linux, and “C:\WordNet-2.1” for Windows) and the

http://wordnet.princeton.edu/wordnet/download/current-version/
http://projects.csail.mit.edu/jwi/
http://nlp.stanford.edu/software/corenlp.shtml

 Contract no. 248347

D2.6 V3.0 Page 36 of 164

dictionary data directory “dict” (the toolkit mainly uses the WordNet data in the “dict”

directory) must be appended to this path (for example, “/usr/local/WordNet-3.0/dict”, and

“C:\WordNet-2.1\dict”). This might be different on your system, depending on where the

WordNet files are located.

(2) JRE installation: download and install Windows-based or Linux-based JREs, depending

what system you use.

(3) Python installation: The toolkit uses python to call DFKI's machine translation system.

2.1.5 Execution instructions

2.1.5.1 Usage

java -jar ComMetric.jar --source [SourceLanguage] --target [TargetLanguage]

--WN [Path2WordNet] --threshold [value] --translationAPI [google|bing|dfki]

--input [path2SourceFileList] --input [path2TargetFileList] --output

[path2result] --tempDir [path2TemporaryDirectory]

2.1.5.2 Parameter description

“--source [SourceLanguage]” – non-English language.

“--target [TargetLanguage]” – any supported language by translation API

“--WN [path2WordNet]” – the full path to the WordNet installation directory

“--threshold [value]” – output the document pairs with a comparability score >= threshold

(between 0-1)

“--translationAPI [google|bing|dfki]” – use either Google, Bing, or DFKI translation API

“--input [path2SourceFileList]” – path to the file that lists the full path to the documents in

source language

“--input [path2TargetFileList]” – path to the file that lists the full path to the documents in

target language

“--output [path2result]” – path to the file that store comparable document pairs with

comparability scores

“--tempDir [path2TemporaryDirectory]” – path to a temporary directory (must exist) for

storing intermediate outputs

2.1.5.3 Examples

Linux:

java -jar ComMetric.jar --source LATVIAN --target ENGLISH --WN

/home/fzsu/WordNet-3.0 --threshold 0.4 --translationAPI google --input

/home/fzsu/ComMetric/sample/lv.txt --input

/home/fzsu/ComMetric/sample/en.txt --output

/home/fzsu/ComMetric/sample/result.txt --tempDir

/home/fzsu/ComMetric/sample/temp

 Contract no. 248347

D2.6 V3.0 Page 37 of 164

Windows:

java -jar ComMetric.jar --source LATVIAN --target ENGLISH --WN

C:\WordNet\2.1 --threshold 0.4 --translationAPI google --input

C:\ComMetric\sample\lv.txt --input C:\ComMetric\sample\en.txt --output

C:\ComMetric\sample\result.txt --tempDir C:\ComMetric\sample\temp

The above command example first translates Latvian documents listed in “lv.txt” in English

and creates a folder called “LATVIAN-translation” in the directory “temp” to store the

translated documents. A file called “LATVIAN-translation.txt” which lists full path to all the

translated documents is also generated in the directory “temp”. In addition, the stemmed data

by word stemming process, and word and index vectors from text-to-vector process are stored

in the directory “temp” as well. Finally, the toolkit computes comparability, and a document

called “result.txt” which listed document pairs with comparability score >=threshold is

generated in the specified path “/home/fzsu/ComMetric/sample/result.txt”.

2.1.6 Input/Output data formats

2.1.6.1 Input

For the corpus, all documents should be UTF-8 encoded, and in plain text. ComMetric takes

two files containing source documents and target documents listings. In these two files, each

line stores the full path to a document.

For example, in Linux a document listing file is as follows:

/home/fzsu/ComMetric/sample/LV/agriculture_lv.txt

/home/fzsu/ComMetric/sample/LV/alcohol_lv.txt

/home/fzsu/ComMetric/sample/LV/cystitis_lv.txt

/home/fzsu/ComMetric/sample/LV/hockey3_lv.txt

/home/fzsu/ComMetric/sample/LV/instruction7_lv.txt

...

and in Windows:

C:\ComMetric\ComMetric\sample\LV\agriculture_lv.txt

C:\ComMetric\ComMetric\sample\LV\alcohol_lv.txt

C:\ComMetric\ComMetric\sample\LV\cystitis_lv.txt

C:\ComMetric\ComMetric\sample\LV\hockey3_lv.txt

C:\ComMetric\ComMetric\sample\LV\instruction7_lv.txt

...

2.1.6.2 Output

The final output file, which lists document pairs with comparability scores, is specified by the

“--output” parameter. In this file, each line stores a pair of documents (full path to the

documents) and the corresponding comparability score, separated by “<TAB>”.

 Contract no. 248347

D2.6 V3.0 Page 38 of 164

Linux example of the output file:

/home/fzsu/ComMetric/sample/LV/instruction7_lv.txt<tab>/home/fzsu/ComMetric

/sample/EN/instruction7_en.txt<tab>0.2331

/home/fzsu/ComMetric/sample/LV/alcohol_lv.txt<tab>/home/fzsu/ComMetric/samp

le/EN/alcohol_en.txt<tab>0.8334

...

Windows example of ComMetric output:

C:\ComMetric\sample\LV\agriculture_lv.txt<tab>C:\ComMetric\sample\EN\agricu

lture_en.txt<tab>0.5258

C:\ComMetric\sample\LV\plant_lv.txt<tab>C:\ComMetric\sample\EN\plant_en.txt

<tab>0.7555

...

2.1.7 Integration with external tools

Assuming WordNet has been installed, the external tools in this toolkit include Stanford POS-

tagger, JWI (Java WordNet Interface), both of them being Java programs and packaged as

“.jar” files. They have been included in this toolkit and no installation is required.

2.1.8 Licence

The toolkit uses five external resources: WordNet, JWI, and Standford POS tagger, Bing

translation API and Google Translation API. WordNet and JWI are free for both research and

commercial purposes, as long as proper acknowledgement is made; Standford POS tagger is

free for research purpose but not commercial use. Bing and Google Translation APIs are also

for research purpose only. Therefore, the licence of this toolkit is "Free to use/modify for

research purposes".

2.1.9 Contact

For further information and technical support installing and/or running this tool, please email

to Fangzhong Su: F.Su@leeds.ac.uk.

2.1.10 Useful references

(1) Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

(2) Kristina Toutanova and Christopher D. Manning. 2000. Enriching the Knowledge Sources

Used in a Maximum Entropy Part-of-Speech Tagger. In Proceedings of the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large Corpora

(EMNLP/VLC-2000), pp. 63-70.

(3) Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. 2003. Feature-

Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-

NAACL 2003, pp. 252-259.

(4) Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating Non-

local Information into Information Extraction Systems by Gibbs Sampling. Proceedings of

the 43nd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp.

363-370.

mailto:F.Su@leeds.ac.uk

 Contract no. 248347

D2.6 V3.0 Page 39 of 164

(5) JWI: http://projects.csail.mit.edu/jwi/

2.2 DictMetric: a toolkit for measuring comparability of

comparable documents

2.2.1 Overview and purpose of this toolkit

This toolkit (DictMetric) is designed to measure the comparability levels of document pairs

via cosine measure. The toolkit can compute comparability scores for both monolingual

document pairs and bi-lingual document pairs. Overall, the toolkit contains two modules: text

translation by lexical mapping and cosine-based comparability computation.

2.2.1.1 Text translation

The toolkit supports two types of text translation. First, for non-English and English language

pairs (e.g., RO-EN), we translated the non-English texts (RO) into English by using lexical

mapping from the available GIZA++ based bilingual dictionaries. Second, for non-English

language pairs (e.g., both the source and target languages are not English, i.e., EL-RO or RO-

DE), the toolkit can either translate source language (i.e., Greek or Romanian) texts into

target language (i.e., Romanian or German) using “el_ro.txt” (or “ro_de.txt”) dictionary; or it

can also use English as the pivot language and translate both source and target language texts

into English. For example, for language pair EL-RO, both the Greek and Romanian texts are

translated into English using “el_en.txt” and “ro_en.txt” dictionaries and the subsequent

comparability measure is thus based on English.

2.2.1.2 Comparability computation

The toolkit at first calls the Standford POS-tagger (available at

http://nlp.stanford.edu/software/tagger.shtml) for POS-tagging and word tokenization. Then

JWI (MIT Java Wordnet Interface) is called for WordNet-based English word stemming.

After word stemming for English language, the stemmed texts are converted into index

vectors. If the translated texts are not in English, then word stemming step will be skipped

and directly go into feature vector conversion. Finally, the toolkit computes the comparability

score of document pairs by applying cosine similarity measure on the index vectors.

Document pairs with a cosine score >=threshold (a predefined value, between 0-1) are

returned as output.

2.2.2 Changes from the previous version

(1) Multithreading has been added in the updated toolkit to improve the processing speed for

large-scale comparable corpora.

(2) The toolkit is also provided in the form of an API (Metric.jar, see section 2.2.5.4), which

allows calling it within user programs.

(3) The current toolkit provides two different executable files: DictMetric.jar and Metric.jar.

Metric.jar can be used as an API and the two external APIs (“edu.mit.jwi_2.1.5_jdk.jar” and

“stanford-postagger-2011-05-18.jar”) it calls are put separately in the same directory. In

http://projects.csail.mit.edu/jwi/
http://nlp.stanford.edu/software/tagger.shtml

 Contract no. 248347

D2.6 V3.0 Page 40 of 164

DictMetric.jar, the two external APIs have been included in the JAR file so that the users can

use “DictMetrics.jar” directly without dealing with the external APIs.

2.2.3 Software dependencies and system requirements

(1) WordNet: the toolkit uses WordNet in a WordNet-based English word stemmer. WordNet

is available at http://wordnet.princeton.edu/wordnet/download/current-version/, the latest

versions are WordNet 2.1 for Windows, and WordNet 3.0 for Unix-like system.

(2) JWI: the toolkit uses MIT Java Wordnet Interface (JWI, available at

http://projects.csail.mit.edu/jwi/) to access WordNet for a WordNet-based word stemming.

Not like the traditional word stemmer which return the stem form of a word (the stems are

usually not words), the WordNet-based stemmer will check if possible stems are in the

WordNet. If so, it will only return these WordNet-based stems; and if not it will return the

traditional stem form. Since most of the stems are words, the WordNet-based stemming is

like a simple word lemmatization tool (which returns lemma of a given word).

(3) Stanford POS-tagger: the toolkit use Standford POS-tagger (available at

http://nlp.stanford.edu/software/tagger.shtml) for POS-tagging and word tokenization.

(4) System platform: platform independent (Windows, Linux or Mac)

(5) JRE: JRE 1.6.0 (lower version should also work)

(6) Stopword list: stopword lists for ACCURAT languages, which are already included in the

toolkit

(7) Bilingual dictionary: GIZA++ based bilingual dictionaries for ACCURAT language

pairs, which are included in the toolkit.

2.2.4 Installation

(1) WordNet installation: download the latest WordNet version (Windows or Unix-like

system) and install it. Record the path to the root of the WordNet installation directory (For

example, “/usr/local/WordNet-3.0” for Linux, and “C:\WordNet-2.1” for Windows) and the

dictionary data directory “dict” (the toolkit mainly uses the WordNet data in the “dict”

directory) must be appended to this path (for example, “/usr/local/WordNet-3.0/dict”, and

“C:\WordNet-2.1\dict”). This might be different on your system, depending on where the

WordNet files are located.

(2) JRE installation: download and install Windows-based or Linux-based JREs, depending

what system you use.

2.2.5 Execution instructions

2.2.5.1 Usage

java -jar DictMetric.jar --source [SourceLanguage] --target

[TargetLanguage] --WN [Path2WordNet] --threshold [value] --input

[path2SourceFileList] --input [path2TargetFileList] --output [path2result]

--tempDir [path2TemporaryDirectory] --option [0|1]

http://wordnet.princeton.edu/wordnet/download/current-version/
http://projects.csail.mit.edu/jwi/
http://nlp.stanford.edu/software/tagger.shtml

 Contract no. 248347

D2.6 V3.0 Page 41 of 164

The argument positions are fixed and the tool may crash or perform unexpectedly if the order

of the parameters in the command line is changed.

2.2.5.2 Parameter description

“--source [SourceLanguage]” – Non-English language

“--target [TargetLanguage]” – any supported language by translation API

“--WN [path2WordNet]” – the full path to the WordNet installation directory

“--threshold [value]” – output the document pairs with a comparability score >= threshold

(between 0-1)

“--input [path2SourceFileList]” – path to the file that lists the full path to the documents in

source language

“--input [path2TargetFileList]” – path to the file that lists the full path to the documents in

target language

“--output [path2result]” – path to the file that store comparable document pairs with

comparability scores

“--tempDir [path2TemporaryDirectory]” – path to a temporary directory (must exist) for

storing intermediate outputs

“--option [0|1]” – translate the non-English text into English (option=1) or not (option=0),

applied to non-English language pairs

2.2.5.3 Examples

Linux:

(1) non-English and English language pairs

java -jar DictMetric.jar --source latvian --target english --WN

/home/fzsu/WordNet-3.0 --threshold 0.1 --input

/home/fzsu/DictMetric/sample/lv.txt --input

/home/fzsu/DictMetric/sample/en.txt --output

/home/fzsu/DictMetric/sample/result.txt --tempDir

/home/fzsu/DictMetric/sample/temp --option 0

(2) non-English language pairs

java -jar DictMetric.jar --source greek --target romanian --WN

/home/fzsu/WordNet-3.0 --threshold 0.1 --input /home/fzsu/DictMetric/el-

ro/el.txt --input /home/fzsu/DictMetric/el-ro/ro.txt --output

/home/fzsu/DictMetric/el-ro/result.txt --tempDir /home/fzsu/DictMetric/el-

ro/temp --option 0

(3) non-English language pairs

java -jar DictMetric.jar --source greek --target romanian --WN

/home/fzsu/WordNet-3.0 --threshold 0.1 --input /home/fzsu/DictMetric/el-

ro/el.txt --input /home/fzsu/DictMetric/el-ro/ro.txt --output

/home/fzsu/DictMetric/el-ro/result.txt --tempDir /home/fzsu/DictMetric/el-

ro/temp --option 1

 Contract no. 248347

D2.6 V3.0 Page 42 of 164

Windows:

java -jar DictMetric.jar --source latvian --target english --WN

C:\WordNet\2.1 --threshold 0.1 --input C:\DictMetric\sample\lv.txt --input

C:\DictMetric\sample\en.txt --output C:\DictMetric\sample\result.txt --

tempDir C:\DictMetric\sample\temp --option 0

The above command example (1) first translates Latvian documents listed in “lv.txt” in

English and creates a folder called “LATVIAN-translation” in the directory “temp” to store

the translated documents. A file called “LATVIAN-translation.txt” which lists full path to all

the translated documents is also generated in the directory “temp”. In addition, the stemmed

data by word stemming process, and word and index vectors from text-to-vector process are

stored in the directory “temp” as well. Finally, the toolkit computes comparability, and a

document called “result.txt” which listed document pairs with comparability score

>=threshold is generated in the specified path “/home/fzsu/DictMetric/sample/result.txt”.

For non-English language pairs, example (2) will translate texts in source language (Greek)

into target language (Romanian, non-English), later only stop-word filtering will be applied

on the translated text and target language texts (both in Romanian now) as word

lemmatization is not publically available for non-English languages. Example (3) will

translate both source and target language texts into English, so both stop-word filtering and

word lemmatization will be further applied on the translated texts.

2.2.5.4 DictMetric API

The command line usage of the API (Metric.jar) is the same as in the description above

(replace “DictMetric.jar” with “Metric.jar” in the above command-line examples). The

purpose of this API is to allow users calling the metric directly from command lines or in

their own java programs. The source code of the API is located in the subdirectory “src”.

To integrate the API in program code:

(1) add “Metric.jar” in the program; put “edu.mit.jwi_2.1.5_jdk.jar” and “stanford-

postagger-2011-05-18.jar” in the same directory as “Metric.jar” because they are external

JAR files called by “Metric.jar”.

(2) import “import leeds.cts.nlp.MultiDict” in the program, as “MultiDict” is the only public

class (main class) in the JAR file.

(3) put the folders “dict” and “stopwords” in the current directory of your program, as they

are assumed to be in the current working directory.

(4) For language pair containing English, you should call the function

“MultiDict.ENTrack()”, for language pairs not containing English, call

“MultiDict.NonENTrack()”. The parameters for these two functions are given within the

source code.

 Contract no. 248347

D2.6 V3.0 Page 43 of 164

For example:

import leeds.cts.nlp.MultiDict;

MultiDict a=new MultiDict();

//a.ENTrack("latvian", "english", "/home/fzsu/WordNet-3.0",

"/home/fzsu/DictMetric/sample/lv.txt",

"/home/fzsu/DictMetric/sample/en.txt", "/home/fzsu/DictMetric/sample/temp",

"/home/fzsu/DictMetric/sample/output.txt", 0.1);

a.NonENTrack("greek", "romanian", "/home/fzsu/WordNet-3.0", "1",

"/home/fzsu/DictMetric/el-ro/el.txt", "/home/fzsu/DictMetric/el-ro/ro.txt",

"/home/fzsu/DictMetric/el-ro/temp", "/home/fzsu/DictMetric/el-

ro/output.txt", 0.1);

2.2.6 Input/Output data formats

2.2.6.1 Input

For the corpus, all the documents should be UTF-8 encoded, and in plain text.

Also, two files (such as “lv.txt” and “en.txt” in the above example) which lists full path to

documents in source language and target document should be available. In these two files,

each line stores the full path to a document.

For example, the format of “lv.txt” in Linux is as below:

/home/fzsu/DictMetric/sample/LV/agriculture_lv.txt

/home/fzsu/DictMetric/sample/LV/alcohol_lv.txt

/home/fzsu/DictMetric/sample/LV/cystitis_lv.txt

/home/fzsu/DictMetric/sample/LV/hockey3_lv.txt

/home/fzsu/DictMetric/sample/LV/instruction7_lv.txt

In Windows its format is as below:

C:\DictMetric\sample\LV\agriculture_lv.txt

C:\DictMetric\sample\LV\alcohol_lv.txt

C:\DictMetric\sample\LV\cystitis_lv.txt

C:\DictMetric\sample\LV\hockey3_lv.txt

C:\DictMetric\sample\LV\instruction7_lv.txt

2.2.6.2 Output

The final output file which lists document pairs with comparability scores is specified by the

“--output” parameter. So in the above example, the result will be store in the file “result.txt”.

In this file, each line stores a pair of documents (full path to the documents) and the

corresponding comparability score, separated by “<TAB>”.

 Contract no. 248347

D2.6 V3.0 Page 44 of 164

For example, the format of “result.txt” is as below:

/home/fzsu/DictMetric/sample/LV/instruction7_lv.txt<tab>/home/fzsu/DictMetr

ic/sample/EN/instruction7_en.txt<tab>0.2352

/home/fzsu/DictMetric/sample/LV/agriculture_lv.txt<tab>/home/fzsu/DictMetri

c/sample/EN/agriculture_en.txt<tab>0.4298

/home/fzsu/DictMetric/sample/LV/alcohol_lv.txt<tab>/home/fzsu/DictMetric/sa

mple/EN/alcohol_en.txt<tab>0.5065

In Windows, its format is as below.

C:\DictMetric\sample\LV\agriculture_lv.txt<tab>C:\DictMetric\sample\EN\agri

culture_en.txt<tab>0.4298

C:\DictMetric\sample\LV\alcohol_lv.txt<tab>C:\DictMetric\sample\EN\alcohol_

en.txt<tab>0.5065

C:\DictMetric\sample\LV\plant_lv.txt<tab>C:\DictMetric\sample\EN\plant_en.t

xt<tab>0.575

2.2.7 Integration with external tools

Assuming WordNet has been installed, the external tools in this toolkit include Stanford POS-

tagger, JWI (Java WordNet Interface), both of them are java programs and packaged as

“.jar” files, thus they have been included in this toolkit and no installation is required.

2.2.8 Licence

The toolkit uses three external resources: WordNet, JWI, and Standford POS tagger. WordNet

and JWI are free for both research and commercial purposes, as long as proper

acknowledgement is made; Standford POS tagger is free for research purpose but not

commercial use. Therefore, the licence of this toolkit is “Free to use/modify for research

purposes”.

2.2.9 Contact

For further information and technical support installing and/or running this tool, please email

to Fangzhong Su: F.Su@leeds.ac.uk.

2.2.10 Useful references

(1) Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

(2) Kristina Toutanova and Christopher D. Manning. 2000. Enriching the Knowledge Sources

Used in a Maximum Entropy Part-of-Speech Tagger. In Proceedings of the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large Corpora

(EMNLP/VLC-2000), pp. 63-70.

(3) Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. 2003. Feature-

Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-

NAACL 2003, pp. 252-259.

(4) JWI: http://projects.csail.mit.edu/jwi/

(5) Franz Josef Och, Hermann Ney. A Systematic Comparison of Various Statistical

Alignment Models. Computational Linguistics, volume 29, number 1, pp. 19-51 March 2003.

mailto:F.Su@leeds.ac.uk
http://projects.csail.mit.edu/jwi/

 Contract no. 248347

D2.6 V3.0 Page 45 of 164

2.3 Features extractor and document pair classifier

2.3.1 Overview and purpose of the tool

Methods developed in WP3 will retrieve comparable documents from different sources. Some

methods will have these documents paired, while some will retrieve sets of documents which

are about the same topic without pairing them. A tool is, therefore, needed to select and pair

documents, which are judged to be comparable from this set. Given a list of source

documents and target documents, this tool will use all possible pairs of documents and extract

numerous features from them. These features will then be used by the classifier to predict the

comparability class of all the given pairs, enabling a subset of document pairs to be chosen as

comparable documents.

This tool contains two processes: features extractor and classifier, which is wrapped using

“Classifier.pl”. The main workflow is described in Figure 3. A more detailed description on

the purpose of each file is also described below.

The feature extractor tool will extract language dependent features and language independent

features from the pairs. To enable all features to be extracted correctly, the tool will require

the English translation of documents (to calculate language dependent feature) and HTML

documents (to calculate language independent feature). These features will be extracted using

“CalculateDependentFeatures.pl” and “CalculateIndependentFeatures.pl”, and later

summarized using “FeaturesSummariser.pl”. The output of the Features Extractor tool will

contain the score of all extracted features for all the document pairs. This output is then

passed into the Classifier.

This classifier is made of two major components: (1) a binary classifier, which used Thorsten

Joachim’s SVM
light

to implement the method, and (2) an error correction schema. At the

moment, the classifier has already been trained using the Initial Comparable Corpora.

However, users may use different training data for the classifier by running

“TrainDocuments.pl”. All the previously extracted features will be passed to

“ClassifyDocuments.pl” together with the classifier model resulted from the training process,

and the final output of this tool consists of selected document pairs and their predicted

comparability levels.

 Contract no. 248347

D2.6 V3.0 Page 46 of 164

Figure 3: Workflow of Features Extractor and Classifier

2.3.2 Changes from the previous version

There are no changes from the previous version.

CalculateDependentFeatures.pl

CalculateIndependentFeatures.pl

FeaturesSummariser.pl

Features Extractor Tool

Classifier

Features File Features File – Training Data

Comparability

Result File

Source Lang Target Lang

 HTML

 plain text

(translated)

 plain text plain text plain text
plain

text
HTML

plain text

(translated)Pl

ain

plain text

(translated)*

* translated target document is only needed for non-English document.

ClassifyDocuments.pl TrainDocuments.pl

Classifier.pl

 Contract no. 248347

D2.6 V3.0 Page 47 of 164

2.3.3 Software dependencies and system requirements

Both the features extractor and the classifier are implemented in the programming language

Perl and can be run in Windows platforms. The following software is required to run this

tool:

1. Perl v5.10 or above

2. 1+ GB RAM; and

3. SVM
light

, which is available from: http://svmlight.joachims.org/
3

2.3.4 Installation

These tools do not require any installation. Simply copy and extract

“D2_6_Section_2_3_FeaturesExtractor-Classifier.zip”. This installation also contains a

folder called “TestingData”, which contains an example scenario on how to run the program.

Please have a look at “Readme.txt” to get further information. The detail of execution

instructions is described in Section 2.3.5.

2.3.5 Execution instructions

To execute the tool, users need to run this command:

perl Classifier.pl --source [sourceLang] --target [targetLang] --input

[listOfSourceDocs] --input [listOfTargetDocs] --output [outputFile] –-

sourcehtml [listOfHTMLSourceDocs] --targethtml [listOfHTMLTargetDocs] --

sourcetranslation [listOfTranslatedSourceDocs] –-targettranslation

[listOfTranslatedTargetDocs] –-param threshold=[minComparabilityLevel] –

param model=[modelFolder] –param mapping=[class mapping]

This script requires several parameters:

1. [sourceLang] represents the source language of the documents, such as Croatian,

Latvian, Lithuanian, etc.

2. [targetLang] represents the target language of the documents, such as English.

3. [listOfSourceDocs] and [listOfTargetDocs] represent lists containing all source

and target documents which need to be extracted. The format of this file is

described in detail in Section 2.3.6.

4. [listOfHTMLSourceDocs] and [listOfHTMLTargetDocs] represent lists

containing the corresponding HTML documents of the previous input files.

5. [listOfTranslatedSourceDocs] and [listOfTranslatedTargetDocs] represent lists

containing all translated documents of the previous input files. Translations are

needed only for non English documents. When translation files are not available,

users may skip the “--sourcetranslation” and “--targettranslation”, and the tool

will automatically call the Google Translation API described in Section 6, which

will translate the required documents. The features extractor will continue once

the translation process has finished.

3
 Since testing was conducted in Windows, the version of SVM

light
included in this package is the Windows

version: http://download.joachims.org/svm_light/current/svm_light_windows.zip. Different version should be

downloaded if different operating system is used to run this tool.

http://svmlight.joachims.org/
http://download.joachims.org/svm_light/current/svm_light_windows.zip

 Contract no. 248347

D2.6 V3.0 Page 48 of 164

6. [minComparabilityLevel] is an optional parameter, and is used to specify the

minimum threshold of the selected documents. The number represents the

comparability class: 1=not parallel, 2=weakly comparable, 3=strongly

comparable, 4=parallel. For example, threshold=3 will result in only strongly

comparable and parallel document pairs to be written in the output document.

7. [model folder] is an optional parameter, and is used to specify different models

for classification. When this value is not set, the default model will be used,

which is the models trained on the Initial Comparable Corpora.

8. [class mapping] is an optional parameter, and is also used when different data

were used in the classification. This value is described in more detail in the

“TrainDocuments.pl” description further below.

Users will not be required to run any other file, since “Classifier.pl” calls all the necessary

classes to extract the features, classify the pairs and produce an output of the selected

documents. However, each phase of this tool can also be run separately, which is explained in

the following description.

First, to extract the dependent features only from the documents, users need to run this

command:

perl CalculateDependentFeatures.pl –-source [sourceLang] –-target

[targetLang] –-metadata [metadataFile] –-outputFolder [outputFolder]

This script requires four parameters:

1. [sourceLang] represents the abbreviations of source language of the documents,

such as HR, LV, LT, etc.

2. [targetLang] represents the abbreviations of target language of the documents,

such as EN.

3. [metadataFile] represents a file containing all document pairs which need to be

extracted. The format of this file is described in detail in Section 2.3.6.

4. [outputFolder] represents an output folder which will be used to store the

extracted features.

The file “CalculateDependentFeatures.pl” contains these following modules:

1. IndexAllFilesSub.pm:

This file indexes all files in the corpora, enabling the TF (Term Frequency) and

IDF (Inverse Document Frequency) to be calculated.

2. BiGramFreqOverlapStemmedCosineSimilaritySub.pm:

This file calculates the cosine similarity of words bi-gram frequency overlap of a

document pair. The content of these documents are stemmed
4
 beforehand.

3. DocLengthWithTranslationSub.pm:

This file calculates the word length difference of a source document (which is

previously translated to English) and a target document.

4. TermFreqOverlapCosineSimilaritySub.pm:

4
 All stemming processes use Porter Stemming Algorithm which is available in

http://tartarus.org/~martin/PorterStemmer/

http://tartarus.org/~martin/PorterStemmer/

 Contract no. 248347

D2.6 V3.0 Page 49 of 164

This file calculates the cosine similarity of term frequency overlap between the

two documents.

5. TermFreqOverlapStemmedCosineSimilaritySub.pm:

This file calculates the cosine similarity of term frequency overlap between the

two documents. Both documents are previously stemmed.

6. TFIDFOverlapStemmedCosineSimilaritySub.pm:

This file calculates the cosine similarity of TF*IDF score between the two

documents. Both documents are previously stemmed.

7. TriGramFreqOverlapStemmedCosineSimilaritySub.pm:

This file calculates the cosine similarity of words tri-gram frequency overlap of a

document pair. The content of these documents are stemmed beforehand.

8. WordOverlapSub.pm:

This file calculates the word overlap between both documents.

9. WordOverlapCosineSimilaritySub.pm:

This file calculates the cosine similarity of word overlap between both

documents.

10. WordOverlapStemmedSub.pm:

This file calculates the cosine similarity of word overlap between both

documents. Both documents are previously stemmed.

11. WordOverlapStemmedCosineSimilaritySub.pm:

This file calculates the cosine similarity of word overlap between both

documents. Both documents are previously stemmed.

Other features which do not require translations are extracted using

“CalculateIndependentFeatures.pl”. This tool requires the exact same parameters as the

previous script and can be run using this command:

perl CalculateIndependentFeatures.pl --source [sourceLang] --target

[targetLang] –-metadata [metadataFile] --outputFolder [outputFolder]

 This file calls the following modules:

1. AllInterLinksOverlapSub.pm:

This file calculates the overlap of inter links between the two documents.

2. AllOutLinksOverlapSub.pm:

This file calculates the overlap of outlinks between the two documents.

3. DocLengthWithoutTranslationSub.pm:

This file calculates the difference between document lengths of the original

documents (both documents are not translated).

4. ImageLinksFilenameOverlapSub.pm:

This file calculates the character overlap of image filenames in both documents.

5. ImageLinksOverlapSub.pm:

This file calculates the character overlap of the entire image links in both

documents.

6. URLLevelAndCharacterOverlapSub.pm:

This file calculates the URL level overlap and URL character overlap of both

documents.

 Contract no. 248347

D2.6 V3.0 Page 50 of 164

Each of these subs will produce output in the tool. To summarise the extracted features from

all the document pairs, users need to run this command:

perl FeaturesSummariser.pl --source [sourceLang] --target [targetLang] --

outputFolder [outputFolder] --comparabilityFile [comparabilityFile]

The last parameter “--comparabilityFile [comparabilityFile]” is optional and only needs to

be used when the comparability levels between the document pairs are already known. This

parameter will need to be included when Features Extractor tool is used to extract features

scores from a training set (such as the Initial Comparable Corpora), but is not needed to

extract evaluation documents. The format of comparability file is described in more detail in

Section 2.3.6.

Given that the features are extracted correctly, this system will give notification output:

Finished: Your summary can be found in [path of the output file].

This output file will later be needed as an input for the classifier: [featuresFile].

Before classifying these document pairs into the different comparability levels, users need to

make sure that the appropriate models for the classifiers exist in the tool. At the moment,

available models from the ICC are included in the folder “Model”. However, the classifier

can be trained using different corpus using the format as shown below:

perl trainDocuments.pl --source [sourceLang] --target [targetLang] --input

[featuresFile] --model [outputModelFolder] --param "mapping=[class

mapping]"

An example of this script is:

perl trainDocuments.pl --source HR --target EN --input C:\ACCURAT\HR-EN-

summary.txt --model C:\ACCURAT\Model --param "mapping=1 0 0 0 2 3 4"

The script above requires five arguments to be passed:

 [sourceLang] represents the source language (abbreviations) of the documents,

such as “HR” (for Croatian), “LV” (for Latvian), etc.

 [targetLang] represents the target language (abbreviations) of the documents,

such as “EN” (for English), etc.

 [featuresFile] represents the extracted features of the training data which shows

the comparability classes and features values.

 [outputModelFolder] represents an output folder which is used to stores the

classifier’s model.

 [class mapping] represents a space-separated code which is used to map the

comparability levels of the features file into different classes. This is specifically

used when the training data and evaluation have different classes of

comparability. For example, the training corpora might contain 7 comparability

classes:

1. Not comparable (documents of different domain and genre)

2. Not comparable (documents of different domain but the same genre)

3. Not comparable (documents of same domain but different genre)

4. Maybe weakly comparable (documents which are automatically aligned

from a set of unaligned weakly comparable sets)

 Contract no. 248347

D2.6 V3.0 Page 51 of 164

5. Weakly comparable (documents which are manually judged to be weakly

comparable)

6. Strongly comparable

7. Parallel

This mapping value is used to select which classes are used in the training and testing data

(the mapping value should be the same for both processes). A few examples of the mapped

value which can be used are listed in the table below. The “√” symbol represents the

comparability level class being used in the process. The unticked column represents the

unused comparability class.

Table 3. Example of Different Mapping Values

Comparability Classes
Mapping Description

[1] [2] [3] [4] [5] [6] [7]

√ √ √ √ √ √ √ 1 2 3 4 5 6 7 All classes are used in training and in

the evaluation process; documents will

be classified into 7 classes.

√ √ √ √ 1 0 0 0 2 3 4 Four different classes are used in

training and evaluation, while the data

from the other 3 classes are discarded.

√ √ √ √ √ √ 1 1 1 0 2 3 4 In this example, 6 different classes are

used in the training, however, in the

evaluation, documents will be

classified into 4 classes only (all three

classes of ‘non comparable’

documents: [1], [2] and [3], are

regarded as non-comparable for

evaluation).

After training is finished, users may classify the documents by running the command below:

perl ClassifyDocuments.pl --source [sourceLang] --target [targetLang] --

input [featuresFile] –-model [modelFolder] --output [outputFile] --param

"mapping=[class mapping]"

The script above requires six essential arguments to be passed:

9. [sourceLang] represents the source language (abbreviations) of the documents,

such as “HR” (for Croatian), “LV” (for Latvian), etc.

10. [targetLang] represents the target language (abbreviations) of the documents,

such as “EN” (for English), etc.

11. [featuresFile] represents the extracted features of the documents to be classified

12. [modelFolder] represents the folder containing models to be used for

classification. This is an output from “TrainDocuments.pl”.

13. [outputFile] represents the output file which will be used to store the predicted

comparability classes for the document pairs

14. [class mapping] represents the mapping value used in the training (as explained

in Table 3)

 Contract no. 248347

D2.6 V3.0 Page 52 of 164

The result from this script is a file containing user’s specified document pairs and their

predicted comparability levels.

2.3.6 Input/output data formats

This section will describe the format of input and output data for this tool. As described in

Section 2.3.5, users need to run “Classifier.pl” and specifying inputs of list of documents:

[listOfSourceDocs], [listOfTargetDocs], [listOfHTMLSourceDocs],

[listOfHTMLTargetDocs], and if available, [listOfTranslatedSourceDocs] and

[listOfTranslatedTargetDocs]. These files must contain the absolute path of the files, with

each file written in each row:

C:\ACCURAT\HR\1000.txt

C:\ACCURAT\HR\1002.txt

C:\ACCURAT\HR\1005.txt

...

The output file will be a tab separated document, specifying the selected document pairs and

their predicted comparability classes: 4 represents parallel documents, 3 represents strongly

comparable documents, 2 represents weakly comparable documents, while 1 represents non

comparable documents. Only documents which score higher than the threshold will be

written in the output file. If threshold is not set, all document pairs will be written in the

results file with their corresponding scores. An example of output file is shown below:

C:\ACCURAT\HR\1000.txt C:\ACCURAT\EN\1000.txt 4

C:\ACCURAT\HR\1002.txt C:\ACCURAT\EN\1000.txt 1

C:\ACCURAT\HR\1005.txt C:\ACCURAT\EN\1010.txt 3

...

The output above represents the finished result of the features extractor and classifier. If only

specific tasks are needed, different files should be run independently instead. The input and

output for each file are described in more detail in the following section.

2.3.6.1 Features Extractor

In this phase, the tool will extract features which are language dependent and language

independent. To extract the former one, documents in source language (and target language if

necessary) need to be translated to English. Language independent features will not require

translation; however, they will require information regarding links or images in the

documents, which are only available in HTML files. Therefore, to enable all features to be

extracted correctly, for each document pair, users will need to prepare the plain text of both

documents, the HTML version of both documents, and the translated (to English) plain text.

 Contract no. 248347

D2.6 V3.0 Page 53 of 164

Both “CalculateDependentFeatures.pl” and CalculateIndependentFeatures.pl” will require a

“[metadataFile]” which contains this format:

[SourceDoc] [SourceTranslatedDoc] [SourceHTMLDoc] [SourceURL]

 [TargetDoc] [TargetTranslatedDoc] [TargetHTMLDoc] [TargetURL]

As mentioned before, translated document is only needed for non-English document.

Otherwise, the value should be set to be the same as the original document as the example of

translated target documents below:

C:\ACCURAT\HR\1000.txt C:\ACCURAT\HR\1000_en.txt

 C:\ACCURAT\HR\1000.html www.1000.com C:\ACCURAT\EN\1000.txt

 C:\ACCURAT\EN\1000.txt C:\ACCURAT\EN\1000.html www.1000.co.uk

All the fields must contain the absolute path of the files.

When comparability level is known, e.g. when extracting features of training data, a

[comparabilityFile] needs to be included when using “FeaturesSummariser.pl”. The format

of this file is as shown below:

[Comparability Level (numeric)] [DocName_1] [DocName_2]

The [outputFile] of the features extractor contains the following format:

[sourceFile] [targetFile] [comparabilityLevel] [f1 score] [f2

score] [f3 score] …

An example of this output is shown below:

SourceFile TargetFile Comparability Level AllInterLinksOverlap

 AllOutLinksOverlap ImageLinksFilenameOverlap ...

C:\ACCURAT\HR\1000.txt C:\ACCURAT\EN\1000.txt null 0.234 0.302 0.51 ...

C:\ACCURAT\HR\1002.txt C:\ACCURAT\EN\1000.txt null 0.544 0.244 0.48 ...

...

2.3.6.2 Classifier

As an input, the classifier will require the output from features extractor as described above,

which lists all the document pairs and the values for each feature. The output from the

Classifier will be a file listing all document pairs and their predicted comparability levels.

The format of the output is tab separated and contains the information of the document pair

and the predicted comparability level as described in the introduction of Section 2.3.6.

2.3.7 Integration with external tools

The tools described above require two external tools:

1. Porter Stemmer, which can be downloaded from

http://tartarus.org/~martin/PorterStemmer/. At this moment, this stemmer has

been included in the Features Extractor tool so no further download is necessary.

2. SVM
light

 algorithm by Joachims, which can be downloaded from

http://svmlight.joachims.org/. At this moment, this tool has been included in the

Features Extractor tool and therefore no further download is necessary. However,

different SVM
light

 toolkit may be needed when this tool is used in different

platform.

http://www.1000.com/
http://www.1000.co.uk/
http://tartarus.org/~martin/PorterStemmer/
http://svmlight.joachims.org/

 Contract no. 248347

D2.6 V3.0 Page 54 of 164

2.3.8 Contact

For further information and technical support installing and/or running this tool, please email

to Monica Paramita: m.paramita@shef.ac.uk.

2.4 EMACC: a textual unit aligner for comparable corpora

using Expectation-Maximization

2.4.1 Overview and purpose of the tool

EMACC is designed to align (translation-wise) different types of textual units such as

documents, paragraphs or sentences in order to reduce the search space for subsequent

alignment tasks. For instance, suppose that we want to word-align a bilingual comparable

corpus consisting of M documents per language, each with k words, using the IBM-1 word

alignment algorithm (Brown et al., 1993). This algorithm searches for each source word, the

target words that have a maximum translation probability with the source word. Aligning all

the words in our corpus with no regard to document boundaries, would yield a time

complexity of operations. The alternative would be in finding a 1:p (with p a small

positive integer, usually 1, 2 or 3) document assignment (a set of aligned document pairs) that

would enforce the “no search outside the document boundary” condition when doing word

alignment with the advantage of reducing the time complexity to operations. When M

is large, the reduction may actually be vital to getting a result in a reasonable amount of time.

The downside of this simplification is the loss of information: two documents may not be

correctly aligned thus depriving the word-alignment algorithm of the part of the search space

that would have contained the right alignments.

The principle behind EMACC’s functionality is that, translation equivalents (both correct and,

surprisingly, incorrect) play a key role in document alignment. We have experimentally

found that there is a certain balance between the degree of correctness of translation

equivalents and their ability to pin-point correct document alignments. In other words, the

paradox resides in the fact that if a certain pair of translation equivalents is not correct but the

respective words appear only in documents which correctly align to one another, that pair is

very important to the alignment process. Conversely, if a pair of translation equivalents has a

very high probability score (thus being correct) but appears in almost every possible pair of

documents, that pair is not informative to the alignment process and must be excluded. We

see now that the EMACC aims at finding the set of translation equivalents that is maximally

informative with respect to the set of document alignments.

The basic workflow of EMACC is as follows:

1. Pre-compute the initial document alignment distribution according to the D2

distribution (Ion, 2011);

2. Iteratively (greedily) find the best document alignment set (called an assignment)

by computing a (translation equivalents based) similarity measure between each

pair of source and target documents;

3. Re-estimate the probabilities of translation equivalents from the best assignment

and resume from step 2 for a given number of steps.

mailto:m.paramita@shef.ac.uk

 Contract no. 248347

D2.6 V3.0 Page 55 of 164

2.4.2 Changes from previous version

 EMACC is now able to align multiple target documents to one source document

and by doing so, it is possible that many source documents align to a target

document;

 Fixed a bug where EMACC behaved randomly with the same set of parameters;

 Heavy memory optimization (hard disk matrices) which resolve “Out of memory”

issues of EMACC when running on large document sets;

 Added a “simple” run mode for EMACC such that, for very large document

collections, no EM is performed (it takes a very long time to complete);

 Added portable Perl code for running in both Windows and Linux environments.

2.4.3 Software dependencies and system requirements

EMACC is entirely written in Perl and it works on a fairly recent version of Perl (5.8 or

5.10). The pre-computing of the initial document alignments distribution can be done in a

parallel fashion (on a Linux cluster). If one wants to run in this mode, additional requirements

must be met:

 SSH secure remote shell must be installed on the master node of the cluster;

 User “rion” must be allowed passwordless SSH access
5
 from the master node to

each of the cluster nodes (the user name is not configurable);

 A NFS mount point
6
 must be read and write accessible to all the nodes of the

cluster.

The test-bed is a 4-node Linux cluster running Ubuntu Linux (versions beginning with 9.04

and newer). Nodes have one or two Intel Xeon processors, each with 4 cores. The RAM on

each node varies between 6 and 8 GB and the NFS drive has around 8TB of storage available

(although for smooth performance, depending on the size of the document collection, at least

10-20 GB of storage should be available).

2.4.4 Installation

If “emacc2.pl” is going to be run on a cluster and assuming that Perl is already installed on

all cluster nodes, one should go through each of the following steps to obtain a working setup

of EMACC:

 Install a NFS server onto the master node of the cluster and NFS clients onto all

nodes of the cluster. Mount the same NFS point (e.g. onto “/mnt/nfs”) in read and

write modes on each node of the cluster;

 Edit the configuration file “emaccconf.pm” and setup all desired values (more on

this in the next section);

5
 To set up a SSH login without passwords authentication, see here: http://linuxproblem.org/art_9.html

6
 To set up NFS on Ubuntu Linux, see here: https://help.ubuntu.com/community/SettingUpNFSHowTo

http://linuxproblem.org/art_9.html
https://help.ubuntu.com/community/SettingUpNFSHowTo

 Contract no. 248347

D2.6 V3.0 Page 56 of 164

 Copy the script “precompworker.pl” onto each node of the cluster in the home

directory of the user “rion”. Make sure that “precompworker.pl” has executable

rights by “rion”.

2.4.5 Execution instructions

In order to run EMACC one must go through the following steps (in order):

1. Edit and configure the file “emaccconf.pm”. This is the global configuration file

from which all values for all parameters are read (the important running

parameters may also be specified in the command line);

2. Run “emacc2.pl” taking care of giving it (if desired) important running

parameters (see below) and (mandatory) the document lists files: the source

document list file and the target document list file.

In order to run “emacc.pl”, another file has to be edited: “cluster.info”. This file contains a

description of processor cores that are available for running (on the local machine or on

remote machines). The format of the file is given below:

#hostname<TAB>IP<TAB>CPUID

is a comment

nefertiti 172.16.39.117 cpu0

nefertiti 172.16.39.117 cpu1

nefertiti 172.16.39.117 cpu2

nefertiti 172.16.39.117 cpu3

nefertiti 172.16.39.117 cpu4

nefertiti 172.16.39.117 cpu5

nefertiti 172.16.39.117 cpu6

nefertiti 172.16.39.117 cpu7

akhenaten 172.16.39.118 cpu0

akhenaten 172.16.39.118 cpu1

akhenaten 172.16.39.118 cpu2

akhenaten 172.16.39.118 cpu3

Empty lines or lines beginning with “#” are ignored (as comments). A useful line states the

hostname of the machine (say “Nefertiti”), its IP address (“172.16.39.117”) and a processor

core ID. For instance, let’s say that the cluster has only 2 nodes: “nefertiti” and “akhenaten”.

“nefertiti” has 2 processors each with 4 cores and “akhenaten” has only 1 processor with 4

cores. Thus, the cores of “nefertiti” may be named “cpu0” through “cpu7” and the cores of

“Akhenaten”, “cpu0” through “cpu3”.

The number of useful lines from “cluster.info” will say how many processes will be run in

parallel by “emacc2.pl”. If one does not have a cluster, this file will contain the local host

name along with its IP and IDs of its CPU cores. The local host name must be the same as the

name reported by the “hostname” command (both Linux and Windows). There is a command

line option (see below) that instructs EMACC to auto-generate this file for local use (not for

cluster use) such that the user need not bother with the configuration.

 Contract no. 248347

D2.6 V3.0 Page 57 of 164

The EMACC configuration file is a Perl module called “emaccconf.pm”. Configuration is

done by simply editing this file and fill in the appropriate values in the marked sections. The

configuration file is self-explanatory. Just read the comments above each parameter.

The command line of “emacc.pl” is as follows (if the script is in the current directory):

Usage : emacc.pl \

 [--source en] [--target ro] \

 [--param EMLOOPS=5] \

 [--param EMACCMODE=emacc-full] \

 [--param MAXTARGETALIGNMENTS=3] \

 [--param INIDISTRIB=D2] \

 [--param TEQPUPDATETHR=0.4] \

 [--param LEXALSCORE=0.4] \

 [--param PROBTYPE=giza] \

 [--param CLUSTERFILE=generate] \

 --input <source language document list file> \

 --input <target language document list file> \

 [--output <output file name>]

where a file containing a document listing (specified with a “--input” option) has the

following format:

/path/to/the/document1.txt

/path/to/the/document2.txt

/path/to/the/document3.txt

…

Thus a line contains the path to a document in the source/target collection. Both target and

source documents must be on the NFS drive if “emacc2.pl” is run on the cluster. When this

command is invoked, a number of “precompworker.pl” processes is started (determined from

reading the “cluster.info” file). The STDERR of the main process provides logging on what’s

going on. The output of EMACC is a file (optionally specified with “--output” switch)

containing the listing of document pairs (alignments) along with alignment scores.

Command line switches that may be specified and that influence the behaviour of EMACC

are as follows:

 “--source” specifies the language of the source document collection. May be

given by full name or as a 2 or 3 letter code;

 “--target” specifies the language of the target document collection. May be given

by full name or as a 2 or 3 letter code;

 “--param EMLOOPS”, which specifies for how many loops the EM algorithm is

looping in order to find the most probable document alignment (usually set to 3 or

5). This applies only when EMACCMODE is set to “emacc-full”;

 “--param EMACCMODE”, which specifies the default operation of the aligner.

When “emacc-full” is given, the full Expectation-Maximization re-estimation of

 Contract no. 248347

D2.6 V3.0 Page 58 of 164

the alignments is done. “emacc-simple” will perform a simpler, greedy alignment

based on the pre-computed D2 alignments. The second option is suggested when

dealing with large document collections (more than 5000 documents per

language);

 “--param MAXTARGETALIGNMENTS” enables one-to-many document

alignments. The integer value of this parameter instructs EMACC to find at most

that many target documents that align to a single source document;

 “--param INIDISTRIB” is the initial document alignment distribution from which

EM begins estimating new alignments. “D2” provides better results. “D1” may

also be specified and means a uniform distribution;

 “--param TEQPUPDATETHR” is the threshold over which translation

equivalents probabilities are re-estimated in the course of the EM procedure.

Values between 0.1 and 0.5 provided the best results in our tests;

 “--param LEXALSCORE” is the threshold over which translation equivalents

from the GIZA++ dictionary are considered in document alignment. Do not

increase this value too much or there will not be enough translation information

to properly align the documents;

 “--param PROBTYPE” is the type of probability of translation equivalents. “giza”

is the probability extracted from the dictionary and “comp” is a modified version.

 “--param CLUSTERFILE” specifies the “cluster.info” file that instructs EMACC

how many processes to spawn. If the value of this parameter is “generate”,

EMACC will auto-generate this file for local use (not cluster use! -- for cluster

use, modify it by hand!) so that the user does not need to configure it (or even

create the file for that matter);

 “--input” (the first one) specifies the source documents list file;

 “--input” (the second one) specifies the target documents list file;

 “--output” specifies the output file that will contain the final document

alignments. If not specified, a default file will be used (check “emaccconf.pm” for

the name and location of that file).

All parameters (“--param” options) may also be specified directly into the “emaccconf.pm”

file (at least those that are not frequently modified). The only mandatory arguments are the “-

-input” options (2 of them).

2.4.6 Input/Output data formats

EMACC requires the lists of source and target documents in two separate files (specified with

the “--input” command line switch). The format of a list file is repeated here for convenience:

/path/to/the/document1.txt

/path/to/the/document2.txt

/path/to/the/document3.txt

…

 Contract no. 248347

D2.6 V3.0 Page 59 of 164

“emacc2.pl” produces a document alignment of the form:

/path/to/source/document1.txt<TAB>/path/to/target/document15.txt<TAB>-1.1

/path/to/source/document1.txt<TAB>/path/to/target/document10.txt<TAB>-2.2

/path/to/source/document2.txt<TAB>/path/to/target/document2.txt<TAB>-3

…

where, on each line of the file, we can find the path to the source document of the pair, the

path of the target document and the alignment score (presented as probabilities in natural

logarithm), all separated by “\t” (the TAB character). This is the standard input for our phrase

extractor tool called PEXACC (see the previous section).

EMACC makes use of several linguistic resources which, in case of running on the cluster,

must be installed on the NFS drive and visible by all cluster nodes. In what follows, we will

make a summary of these resources, each with its own format:

 stop word lists: lists of word forms of functional words (one word per line, UTF-8

encoded)

 inflectional endings lists: lists of inflectional endings that are used to stem words

in order to gain statistical significance (one ending per line, UTF-8 encoded)

 GIZA++ dictionaries in the form:

source word <TAB> target word <TAB> probability <NEWLINE>...

2.4.7 Integration with external tools

There are no other tools that need to be installed and/or used in conjunction with EMACC.

2.4.8 Contact

For further information and technical support installing and/or running this tool, please email

to Radu Ion: radu@racai.ro.

2.4.9 Useful references

Brown, P. F., Lai, J. C., and Mercer, R. L. 1991. Aligning sentences in parallel corpora. In

Proceedings of the 29th Annual Meeting of the Association for Computational

Linguistics, pp. 169–176, June 8-21, 1991, University of California, Berkeley,

California, USA.

Ion, R., Ceauşu, A., and Irimia, E. 2011. An Expectation Maximization Algorithm for Textual

Unit Alignment. In Proceedings of the 4th Workshop on Building and Using

Comparable Corpora (BUCC 2011) held at the 49th Annual Meeting of the Association

for Computational Linguistics, pp. 128—135, Portland, Oregon, USA, June 24th, 2011.

(C) 2011 Association for Computational Linguistics. ISBN: 978-1-937284-01-5.

mailto:radu@racai.ro
http://aclweb.org/anthology-new/W/W11/W11-1217.pdf
http://aclweb.org/anthology-new/W/W11/W11-1217.pdf

 Contract no. 248347

D2.6 V3.0 Page 60 of 164

2.5 PEXACC: a parallel phrase extractor from comparable

corpora

2.5.1 Overview and purpose of the tool

Comparable corpora are inherently different from parallel corpora:

 The order of translation is not preserved; thus, the significant search space

optimization from which all parallel alignment algorithms beneficiate (the

“translation window” out of which no translations are possible) is null in this

case;

 The translations that one finds in comparable corpora are (most of them)

accidental; thus, the match between pieces of text is more difficult due to the fact

that the meaning of the source phrase may only be approximately reproduced in

one target candidate phrase.

Given these characteristics of comparable corpora, PEXACC will try to alleviate the effect of

these problems by:

 Trying (and scoring) all possible combinations of pairs of pieces of text (or

textual units) so that each pair will receive a “translation probability score” that

the source textual unit is translated by the respective target textual unit;

 Using relevance feedback loops which is a mechanism by which PEXACC learns

new translations from the already mapped data so that, new information may be

found and added to the parallel data already found.

The general purpose of PEXACC is to extract parallel data from comparable corpora for use

in SMT training of translation models. The granularity level of the textual units that can be

mapped is customizable. Thus, PEXACC can align sentences and/or sub-sentential parts of

text to which we will refer as “chunks”. We have imposed this restriction in order to deal

with weakly comparable corpora which, generally, do not contain sentential translations.

The general processing flow of PEXACC is as follows:

1. For a list of document pairs found by EMACC (see the next section) and for each

pair of documents from that list,

2. Split the source and the target documents at sentence/chunk level (depending on a

configuration option),

3. Find all pairs of sentences/chunks that score above a certain threshold at

“translation probability”,

4. Apply GIZA++ on all the pairs found at step 3 and add the resulting dictionary to

the base dictionary that PEXACC uses,

5. Go to step 3 and rescore all the pairs of sentences/chunks. Repeat this loop for a

number of steps (experimentally, set to 5)

2.5.2 Changes from previous version

 Added portable Perl code for running in both Windows and Linux environments;

 No dependency upon the String::Similarity package from CPAN.org;

 Contract no. 248347

D2.6 V3.0 Page 61 of 164

 Changed the parallel computation paradigm and removed the NFS file

reading/writing for improving speed when running on a network cluster;

 Changed the parallelism similarity metric to be symmetrical in order to have

evidence from both translation directions;

 Fixed a sentence splitting bug where empty sentences were generated;

 Added a filtering step such that punctuation/number phrases are filtered out;

 Added chunk clustering when aligning chunks of text (consecutive aligned

chunks of text form larger pieces of aligned text);

 Added a better tokenization routine of the sentences to be paired;

 Fixed several bugs found in the similarity measure routine.

2.5.3 Software dependencies and system requirements

PEXACC is entirely written in Perl and it works on a fairly recent version of Perl (5.8 or

5.10). The software that needs to be installed so that PEXACC can run is:

 Perl (5.10 preferred); optionally, the String::Similarity package installed from

CPAN.org;

 GIZA++ 1.0.5 from Google Code:

 http://code.google.com/p/giza-pp/downloads/detail?name=giza-pp-v1.0.5.tar.gz

Note: when compiling giza-pp 1.0.5 on Ubuntu 9.04, one must remove the “gcc”

optimization flags (-On where n=2, 3) from the GIZA++ Makefile because the resulting

executable crashes randomly.

PEXACC has support for distributed computing. If one wants to run in this mode, additional

requirements must be met:

 SSH secure remote shell must be installed on the master node of the cluster and

the “scp” remote copy utility must be accessible in the PATH;

 GIZA++ must be installed on the master node of the cluster;

 User “rion” must be allowed passwordless SSH access
7
 from the master node to

each of the cluster nodes (the user name is not configurable) and from each

cluster node to the master;

 All the resources that PEXACC uses (dictionaries, inflection lists, stop words

lists) must be copied onto each node of the cluster with the same absolute paths

as on the master.

The test-bed is a 4-node Linux cluster running Ubuntu Linux (versions beginning with 9.04

and newer). Nodes have one or two Intel Xeon processors, each with 4 cores. The RAM on

each node varies between 6 and 8 GB and the NFS drive has around 8TB of storage available

(although for smooth performance, depending on the size of the document collection, at least

10-20 GB of storage should be available).

7
 To set up a SSH login without passwords authentication, see here: http://linuxproblem.org/art_9.html

http://code.google.com/p/giza-pp/downloads/detail?name=giza-pp-v1.0.5.tar.gz
http://linuxproblem.org/art_9.html

 Contract no. 248347

D2.6 V3.0 Page 62 of 164

2.5.4 Installation

Assuming that Perl is already installed, one should go through each of the following steps to

obtain a working setup of PEXACC:

 Use the “perl –MCPAN –e shell” command to install the Perl package

String::Similarity onto each node of the cluster; if this package is not installed,

PEXACC will use its own internal implementation of the string similarity

measure;

 Download and compile giza-pp-1.0.5. Install it on the computer running PEXACC

in a location that you will remember (e.g. “/usr/local/giza++-1.0.5/bin”) because

the location of the GIZA++ executable and other utilities is required to configure

PEXACC;

 Edit the configuration file “pexacc2conf.pm” and setup all desired values (more

on this in the next section);

 Copy the script “pdataworker.pl” and the package “strsim.pm” onto each node of

the cluster in the home directory of the user “rion”. Make sure that

“pdataworker.pl” has executable rights by “rion”;

 Copy the “res/” and “dict/” directories from the distribution kit onto each node of

the cluster making sure that the absolute path to these directories from the master

node is the same on each cluster node. This path can be set by editing the

“pexacc2conf.pm” file and configuring the “PEXACCWORKINGDIR” entry.

2.5.5 Execution instructions

In order to run PEXACC one must follow some configuration steps first.

First file that has to be edited is “cluster.info”. This file contains a description of processor

cores that are available for running (on the local machine or on remote machines). The format

of the file is given below:

#hostname<TAB>IP<TAB>CPUID

is a comment

nefertiti 172.16.39.117 cpu0

nefertiti 172.16.39.117 cpu1

nefertiti 172.16.39.117 cpu2

nefertiti 172.16.39.117 cpu3

nefertiti 172.16.39.117 cpu4

nefertiti 172.16.39.117 cpu5

nefertiti 172.16.39.117 cpu6

nefertiti 172.16.39.117 cpu7

#akhenaten 172.16.39.118 cpu0

#akhenaten 172.16.39.118 cpu1

#akhenaten 172.16.39.118 cpu2

#akhenaten 172.16.39.118 cpu3

Empty lines or lines beginning with “#” are ignored (as comments). A useful line states the

hostname of the machine (say “nefertiti”), its IP address (“172.16.39.117”) and a processor

 Contract no. 248347

D2.6 V3.0 Page 63 of 164

core ID. For instance, let’s say that the cluster has only 2 nodes: “Nefertiti” and “akhenaten”.

“Nefertiti” has 2 processors each with 4 cores and “akhenaten” has only 1 processor with 4

cores. Thus, the cores of “Nefertiti” may be named “cpu0” through “cpu7” and the cores of

“akhenaten”, “cpu0” through “cpu3”.

The number of useful lines from “cluster.info” will say how many processes will be run in

parallel by PEXACC. If one does not have a cluster, this file will contain the local host name

along with its IP and IDs of its CPU cores. The local host name must be the same as the name

reported by the “hostname” command (both Linux and Windows). There is a command line

switch (see below) that will force PEXACC to auto-generate this file in order for it to run

locally
8
 (no clustering involved).

The PEXACC configuration file is a Perl module called “pexacc2conf.pm”. Configuration is

done by simply editing this file and fill in the appropriate values in the marked and

commented sections or by supplying values for a selected collection of parameters directly

into the command line of PEXACC. The configuration file is self-explanatory. Just read the

comments above each parameter.

The command line run of PEXACC is as follows (if the script is in the current directory):

Usage: ./pdataextract-p.pl \

 [--source en] [--target ro] \

 [--param GIZAPPEXE=/usr/local/giza++-1.0.5/bin/GIZA++] \

 [--param PLAIN2SNTEXE=/usr/local/giza++-1.0.5/bin/plain2snt.out] \

 [--param CLUSTERFILE=generate] \

 [--param SENTRATIO=1.5] \

 [--param SPLITMODE=chunk] \

 [--param OUTPUTTHR=0.1] \

 [--param GIZAPPITERATIONS=3] \

 --input <--output file from emacc.pl or equivalent> \

 [--output <output file>]

where the command line switches have the following meanings (indicated are the defaults):

 “--source” and “--target” specify the source language and the target language

respectively (for all ACCURAT languages with English on one side, preferably

the source). These languages may be specified by their full name or by 2 or 3

letter codes. They are converted internally to a 2 letter code;

 “--param GIZAPPEXE” specifies the location of the GIZA++ executable (it can

be configured only once in “pdataextractconf.pm”);

 “--param PLAIN2SNTEXE” specifies the location of the “plain2snt.out”

executable (it can be configured only once in “pexacc2conf.pm”);

8
 If run on Linux/Unix, PEXACC is able to detect the number of processors/cores that the system recognizes. If

run on Windows, only one processor/one core is assumed (specific C++ routines are required to correctly

determine this information). So, it is strongly recommended to edit the “cluster.info” file if running in an

Windows environment.

 Contract no. 248347

D2.6 V3.0 Page 64 of 164

 “--param CLUSTERFILE” specifies the “cluster.info” file. If the value of this

parameter is “generate”, an auto-generated file will be created that will ensure

that PEXACC can be run locally without the user needing to configure this file;

 “--param SENTRATIO” is the maximum ratio allowed between the larger text

fragment (count in words) over the smaller text fragment in a candidate pair. Any

pairs exceeding this value will be discarded;

 “--param SPLITMODE” may be one of “chunk” or “sent”. If “chunk”, then

PEXACC will split the text into sentences and then, into smaller text fragments

(use “chunk” with weakly comparable corpora). “sent” instructs PEXACC to

perform only sentence splitting;

 “--param OUTPUTTHR” is the parallelism probability threshold over which

parallel sentences/phrases are actually written in the output file;

 “--param GIZAPPITERATIONS” is the number of extract-train-loop iterations

that PEXACC is going to execute. A couple of iterations (3 to 5) experimentally

guarantees that more (and better) parallel sentences/phrases are extracted;

 “--input” requires the document alignment file from EMACC or similar;

 “--output” specifies the name of the output file. This file will contain the final

results.

All these options (with the exception of the file from the “--input” switch) and some more

may be configured by also directly editing the configuration file “pexacc2conf.pm”.

The file containing the document alignments (specified with the “--input” switch) has the

following format:

/path/to/source/document1.txt<TAB>/path/to/target/document15.txt<TAB>-0.5

/path/to/source/document1.txt<TAB>/path/to/target/document10.txt<TAB>-1

/path/to/source/document2.txt<TAB>/path/to/target/document2.txt<TAB>-2

…

Thus a line contains a pair of documents with an alignment score (probabilities in natural

logarithm). The source and target documents are separated by “\t” (the TAB character) and

the alignment score is also separated by “\t” from the pair. This file is typically produced a

document aligner application such as EMACC (see the next section).

When that command is invoked, a number of “pdataworker.pl” processes is started

(determined from reading the “cluster.info” file) and each of the collection of aligned

phrases/sentences is written in an iteration-dependent file (see the “pexacc2conf.pm” file for

the location and naming convention of the results). The STDERR of the main process

provides logging on what’s going on.

PEXACC must be run on the master node of the cluster (the one containing the “pexacc2.pl”

script).

 Contract no. 248347

D2.6 V3.0 Page 65 of 164

2.5.6 Input/Output data formats

PEXACC requires as input a single document alignment file produced by EMACC for

instance. The format of that file has been presented already but is also given below:

/path/to/source/document1.txt<TAB>/path/to/target/document15.txt<TAB>-0.5

/path/to/source/document1.txt<TAB>/path/to/target/document10.txt<TAB>-1

/path/to/source/document2.txt<TAB>/path/to/target/document2.txt<TAB>-2

…

Thus a line contains a pair of documents with an alignment score (probabilities in natural

logarithm). The source and target documents are separated by “\t” (the TAB character) and

the alignment score is also separated by “\t” from the pair. The source and target documents

themselves must be UTF-8 encoded with not byte order markings at the beginning. Both

target and source documents must be on the NFS drive if PEXACC is run on the cluster.

PEXACC uses the following types of resources (see the PEXACC distribution for examples)

which must be copied onto each cluster node if run in cluster mode:

 GIZA++ dictionaries with the following format:

source word form<TAB>target word form<TAB>probability<NEW LINE>

 markers files: lists of word forms of functional words (one word per line, UTF-8

encoded) that usually mark the end of clauses or other types of syntactic phrases

(e.g. verbal or prepositional phrases)

 inflectional endings lists of strings (UTF-8 encoded, one string per line) that

usually appear in words’ suffixes to indicate gender, definiteness, etc.

 stop word lists: lists of word forms of functional words (one word per line, UTF-8

encoded)

The output of PEXACC is a collection of files, one for each iteration. These files contain the

set of aligned phrases/sentences that PEXACC found at iteration i. The file corresponding to

the last iteration should contain the largest set of aligned phrases. The format of such a file is:

source phrase 1

target phrase 1

probability 1

source phrase 2

target phase 2

probability 2

…

If the configuration file “pexacc2conf.pm” is not changed with respect of output file naming,

then, for a 3 iteration run of PEXACC, for English (“en”) to Romanian (“ro”) alignment of

phrases from “Wikipedia” documents, the last output file would be named “en-ro-Wikipedia-

pdataextract-p-3.txt”. If the “--output” command line switch is specified, the last output file

will also be copied into the value of the “--output” switch.

 Contract no. 248347

D2.6 V3.0 Page 66 of 164

2.5.7 Integration with external tools

GIZA++ is the only external tool that needs to be available to PEXACC (see the “System

requirements” section). GIZA++ is configured by a file called “pdataextract-gizapp.gizacfg”

which is distributed along with PEXACC. It is a standard GIZA++ configuration file minus

the dynamic information (“.snt” and “.vcb” files) supplied by PEXACC at run time. It needs

not be erased between runs.

2.5.8 Contact

For further information and technical support installing and/or running this tool, please email

to Radu Ion: radu@racai.ro.

2.5.9 Useful references

Official Ubuntu Documentation (if installation is done on Ubuntu):

https://help.ubuntu.com/

Comprehensive Perl Archive Network:

http://www.cpan.org/

Open SSL:

http://www.openssl.org/

D2.2 ACCURAT Deliverable: “Report on multi-level alignment of comparable corpora”

which documents the PEXACC algorithm.

GIZA++ documentation:

Franz Josef Och, Hermann Ney. "Improved Statistical Alignment Models". Proc. of the 38th

Annual Meeting of the Association for Computational Linguistics, pp. 440-447, Hong Kong,

China, October 2000.

2.6 A ME parallel sentence extractor tool

2.6.1 Overview and purpose of the tool

This tool is built to extract parallel sentences or phrases from comparable corpus. A maximal

entropy method (Munteanu and Marcu 2005) was applied to classify each potential aligned

sentence/phrase pair as parallel or non-parallel. User could extract their own parallel data

with any language pair. In addition, users are able to train their own maximal entropy (ME)

model by providing numbers of samples.

2.6.2 Changes from previous version

The updated version of the ME parallel sentence extractor allows users to train their own

models and contains an updated feature set. As the updated version contains new use cases,

the execution sequences from the last version won’t work in the new version. Users must take

this change into account when updating to the new version.

mailto:radu@racai.ro
https://help.ubuntu.com/
http://www.cpan.org/
http://www.openssl.org/
http://www-i6.informatik.rwth-aachen.de/Colleagues/och/ACL00.ps

 Contract no. 248347

D2.6 V3.0 Page 67 of 164

2.6.3 Dependencies and system requirements

1) This tool has been tested on the following environment:

Table 4 Tested environments

Machine Type
OS Gcc version

X86_64
Ubuntu 4.4

version 2.6.31

4.4.1/

4.2.4

i686
SUSE Linux

version 2.6.11.4

3.3.5

2) A word translation probability table should be provided, with a numeric value which

present its probability, one space is between them for splitting, as:

Target_word_1 source_word_1 number1

Target_word_2 source_word_2 number2

...

i.e. we use Giza’s lexcial table after word alignment on europarl-v6.news-

commentary corpus, German as the source language, English as the target language:

functions Fluglizenzen 0.1428571

regulated Fluglizenzen 0.0714286

for Fluglizenzen 0.1428571

...

2.6.4 Installation

We provide a default binary executable “extract”, which is runnable under x86_64

environment. If you want to re-build it, please input the following command under Linux

bash:

1) make clean: clean all executive and output files.

2) make all: compile, link and generate all output file and executable.

2.6.5 Execution instructions

After installation, you will get one executable files: extract.

It’s a build for extracting parallel corpus from comparable data.

2.6.5.1 Instructions of extraction

(1) Usage:

chmod +x extract

./extract --source […] –-target […] –-param LEX=[…] –-input […] –-output

[…]

 Contract no. 248347

D2.6 V3.0 Page 68 of 164

(2) Parameter description:

 --source [LANG] - Source Language

 --target [LANG] - Target Language

 --param [[…]=[…]] – parameters:

o LEX=[…] – File path of lexical translation table

o TRAIN=[0/1] – Switch between extract/train mode

o TRAIN_SIZE=[…] – Training sample number (Train mode only)

o TEST_SIZE=[…] – Test sample number (Train mode only)

 --input

o [PATH TO A FILE] – The document pair list file from the comparability

metrics. (extract mode)

o [PATH TO A Directory] – The directory which contains training and test

sample files with specific name format. (train mode)

 --output[PATH TO A FILE] – Output file path . (extract mode only)

(3) Command line examples

An extraction example is in „./sample/extract.sh”,

./extract --source de --target en --param LEX=Script/lex.6.f2e TRAIN=0

TRAIN_SIZE=0 TEST_SIZE=0 --input ./sample/input --output ./sample/output

An training example is in „./sample/train.sh”,

./extract --source de --target en --param LEX=Script/lex.6.f2e TRAIN=1

TRAIN_SIZE=10000 TEST_SIZE=1000 --input ./sample/data --output

./sample/output

2.6.6 Data formats and constraints

EXTRACTION:

(1) Input

All the documents, lexical table should be UTF-8 encoded and in plain text. The sentences in

comparable corpus should be split into lines.

(2) Output

In the output file, the list of extracted phrases is written in the form:

source sentence1

target sentence1

score1

source sentence2

target sentence2

score2

TRAINING:

(1)Input

Sample file name are described by 3 choices: [train/test].[pos/neg].[source/target]

 Contract no. 248347

D2.6 V3.0 Page 69 of 164

8 combinations should be provided as UTF-8 plain text for both training and test purpose. For

each identical file pair (i.e. train.pos.de & train.pos.en), they should contain the same number

lines of sentences/phrases, which indicate their parallelism/non-parallelism.

(2)Output

Two numeric values are printed as precision and recall.

One derived model is saved as “Script/model”.

2.6.7 Integration with external tools

This tool is based on maxent-2.1.1: a simple C++ library for maximum entropy classifiers,

which was developed by Tsujii laboratory from University of Tokyo. Any further

release/publication should include its LICENSE.

2.6.8 Contact

Further information and technical support, please email to Xiaojun Zhang:

Xiaojun.Zhang@dfki.de.

2.6.9 Useful references

A simple C++ library for maximum entropy classification, University of Tokyo, Tsuji

Laboratory: http://www-tsujii.is.s.u-tokyo.ac.jp/~tsuruoka/maxent/.

D. S. Munteanu, D. Marcu, Improving Machine Translation Performance by Exploiting Non-

Parallel Corpora, Computational Linguistics, volume 31, number 4, pp. 477-504,

December 2005.

2.7 LEXACC: fast parallel sentence mining from comparable

corpora

2.7.1 Overview and purpose of the tool

In the case of comparable corpora, parallel sentences, should they exist at all, are scattered all

around the source and target documents, and as such, any two sentences have to be processed

in order to determine if they are parallel or not. Thus, finding parallel sentences in

comparable corpora is confronted with the vast search space one has to consider since any

positional clues indicating parallel or partially parallel sentences are not available.

The brute force approach is to analyse every element of the Cartesian product built between

the two sets containing sentences in the source and target languages. This approach is clearly

impractical because the resulting algorithm would be very slow and/or would consume a lot

of memory. In order to reduce the search space, we turned to a framework that belongs to

Information Retrieval: Cross-Language Information Retrieval (CLIR). The idea is simple: use

a search engine to find sentences in the target corpus that are the most probable translations

of a given sentence from the source corpus. The first step is to consider the target sentences

as documents and index them. Then, for each sentence in the source corpus, one selects the

content words and translates them into the target language according to a given dictionary.

mailto:Xiaojun.Zhang@dfki.de
http://www-tsujii.is.s.u-tokyo.ac.jp/~tsuruoka/maxent/

 Contract no. 248347

D2.6 V3.0 Page 70 of 164

The translations are used to form a Boolean query which is then fed to the search engine. The

top hits are considered to be translation candidates.

LEXACC is a parallel sentence extraction algorithm that uses a search engine (Lucene,

http://lucene.apache.org/) to index the target document collection in order to retrieve the

translation candidates for the input source sentence. Then, after a pre-filtering phase, it

applies the translation similarity measure of PEXACC to select the desired parallel sentence

pairs to which it assigns the computed PEXACC score.

2.7.2 Changes from previous version

LEXACC is a new addition to the ACCURAT Toolkit.

2.7.3 Dependencies and system requirements

LEXACC is written in C# on the Microsoft .NET Framework version 4.0 and, on Windows

machines, it requires the installation of this framework in order to run. For Linux systems, the

Mono interpreter (http://www.mono-project.com/) for .NET Framework can be installed in

which LEXACC can run.

For building the index of the target document collection and for storage of the intermediate

files, depending on the corpus size, it is recommended to run LEXACC on a disk partition

with plenty of available space. The intermediary files can easily reach 10GB and thus, we

recommend at least 100GB available disk space.

2.7.4 Installation

LEXACC is compiled for the .NET Framework and it has a simple command line interface.

No installation is required.

2.7.5 Execution instructions

LEXACC can be run in two modes: with available document alignments (the recommended

usage) and without document alignments (only if document alignments are hard to obtain/do

not exist for whatever reason). The command line interface is compatible with the Parallel

Data Mining Workflow specifications. The switches controlling the I/O data for LEXACC

are:

 “--source” and “--target” specify the source language and the target language

respectively. These languages are to be specified by a 2 letter code (ro, en, hr, de, sl,

lt, lv, et, el);

 “--docalign” gives the document alignments list in a format similar to that produced

by EMACC or DictMetric (see their entries in this document). This is the run mode

with available document alignments;

 “--input” and “--input” (always 2 input switches) give the source and the target

document lists in the case that the document alignment list is not available. The

formats of these lists are the same as in case of DictMetric or EMACC. This is the run

mode without the document alignments. If these switches are present then

“--docalign” must NOT be given and vice versa;

http://lucene.apache.org/
http://www.mono-project.com/Main_Page

 Contract no. 248347

D2.6 V3.0 Page 71 of 164

 “--output” specifies the file to write the found parallel sentence pairs to;

 “--param seg=true” specifies that the text in the source and target documents is

already sentence split and tokenized (default “false”);

 “--param maxrep=<integer>” specifies the maximum number of target sentences to

align to one source sentence (default “1”);

 “--param kif=true” instructs LEXACC to not delete the intermediary files it produces

(i.e. to keep intermediary files). Useful for debugging purposes; default “false”.

When processing very large corpora it is recommended to set this parameter to

“true” because LEXACC may crash when trying to sort (in memory) the extracted

pairs by the translation similarity measure;

 “--param t=<float>” causes LEXACC to output only those sentence pairs that have a

translation similarity measure above the specified real value (default “0.2”);

 “--param filter=false” causes LEXACC to NOT perform a pre-filtering step of the

candidate sentence pairs before computing the PEXACC translation similarity

measure (default “true”). Filtering greatly reduces the running time but it also reduces

the recall of LEXACC.

For instance, running LEXACC on an English-Romanian comparable corpus with available

document alignments, requesting at most 2:2 sentence alignments with at least 0.3 translation

similarity score, with filtering and LEXACC-supplied sentence splitting and tokenization, the

command line would be:

lexacc32.exe --source en --target ro --docalign en-ro-docalign-list.txt \

--param seg=false --param filter=true --param maxrep=2 \

--param t=0.3 --output results.txt

or, using the defaults

lexacc32.exe --source en --target ro --docalign en-ro-docalign-list.txt \

--param maxrep=2 --param t=0.3 --output results.txt

2.7.6 I/O data formats and constraints

When running with document alignments, LEXACC requires as input a single document

alignment file produced by EMACC or DictMetric for instance. The format of that file has

been presented already but is also given below:

/path/to/source/document1.txt<TAB>/path/to/target/document15.txt<TAB>-0.5

/path/to/source/document1.txt<TAB>/path/to/target/document10.txt<TAB>-1

/path/to/source/document2.txt<TAB>/path/to/target/document2.txt<TAB>-2

…

Thus a line contains a pair of documents with an alignment score (probabilities in natural

logarithm). The source and target documents are separated by “\t” (the TAB character) and

the alignment score is also separated by “\t” from the pair. The source and target documents

themselves must be UTF-8 encoded without byte order markings at the beginning.

 Contract no. 248347

D2.6 V3.0 Page 72 of 164

In the other run mode, without document alignments, LEXACC requires the lists of source

and target documents in two separate files (specified with the “--input” command line

switch). The format of a list file is repeated here for convenience:

/path/to/the/document1.txt

/path/to/the/document2.txt

/path/to/the/document3.txt

…

The output of LEXACC has the following format (UTF-8 encoded):

source sentence 1

target sentence 1

score 1

source sentence 2

target sentence 2

score 2

...

2.7.7 Integration with external tools

LEXACC does not depend on any external tools other than the Lucene library for .NET

Framework which is included with the distribution. Lucene is distributed through the Apache

License Version 2.0.

2.7.8 Contact

For further information and technical support, please email to Dan Ștefănescu

(danstef@racai.ro) and Radu Ion (radu@racai.ro).

2.7.9 Useful references

Lucene Search Engine: http://lucene.apache.org/

LEXACC paper:

Dan Ştefănescu, Radu Ion, and Sabine Hunsicker. Hybrid Parallel Sentence Mining from

Comparable Corpora. In Proceedings of the 16th Conference of the European Association for

Machine Translation (EAMT 2012), Trento, Italy, May 28-30, 2012

mailto:danstef@racai.ro
http://lucene.apache.org/

 Contract no. 248347

D2.6 V3.0 Page 73 of 164

3 Tools for named entity recognition

This section covers the tools that perform named entity recognition and tools that are created

to integrate out of ACCURAT project developed tools within the toolkit’s general use case

workflows.

The tools included in this section of the ACCURAT toolkit are:

 TildeNER (Latvian and Lithuanian named entity recognition developed by Tilde;

see section 3.1).

 OpenNLPWrapper (OpenNLP English named entity recognition system’s

wrapper system developed by USFD; see section 3.2).

 NERA1: Named Entity Recognition for English and Romanian (developed by

RACAI; see section 3.3).

3.1 TildeNER

3.1.1 Overview and purpose of the tool

TildeNER is a named entity recognition and classification system. The system contains

workflows that allow not only named entity (NE) tagging of single files, but also pre-

processing and post-processing of plaintext documents and even whole directories. The

system also contains a heavily configurable bootstrapping module, which allows training,

improvement and evaluation of new NE models if necessary. The system is originally

designed and developed for Latvian and Lithuanian named entity recognition, but is not

limited to the design languages; therefore new languages can be easily added with the

included bootstrapping module. Some of the usage scenarios are described further. The

system’s core functionality – classification is done by the Stanford NER conditional random

field (CRF) classifier (some minor changes have been made to the classifier in order to

support additional feature functions and the TildeNER input and output data standards).

The tool allows tagging of plaintext or pre-processed tab-separated (tokenized, POS-tagged,

lemmatized) documents and it allows the results to be saved in a MUC-7 compliant plaintext

mark-up or as tab-separated (tokenized, POS-tagged, lemmatized and NE-tagged) documents.

Named entity recognizers are widely used to improve search functionalities (for example,

person, organization, location search), to extract keywords from text, to find non-dividable

phrases in texts, etc. The latter is useful in machine translation and allows finding segments,

which should be translated using specific methods, or that should not be translated at all or

only transliterated (for example, person names, often locations).

The architecture of the TildeNER bootstrapping system is shown in Figure 4. The system

requires MUC-7 compliant annotated corpus (seed list, development data and test data) and

an unlabelled data corpus in order to train a NER model (an annotation tool is included in the

toolkit). Also gazetteer data can be provided (but is not mandatory) in order to train the

system.

The system iteratively trains new NER models on the training data of the particular iteration.

In the first iteration the training data is the seed data, but in the further iterations new data is

acquired by tagging the unlabelled data corpus and selecting new candidate training sentences

 Contract no. 248347

D2.6 V3.0 Page 74 of 164

based on uniqueness constraints and sentence ranking. The sentences are ranked according to

the classifier assigned NE token average probabilities. A threshold is used to control that low

likelihood NE-tagged tokens do not get selected as new candidate training data.

In each of the iterations the system is evaluated on development and test data. We use the

development data in order to fine tune the system. An option allows usage of only positive

iteration candidate training data for further iterations (it has proven to give the best results).

System generated data User selected corpora

Iterations
left?

Yes

Tilde’s NESimpleAnnotator
annotation tool

Data flow

Stanford NER CRF Classifier

Tilde’s NER Bootstrapping scripts

Unlabeled seed,
development and

test data

Manual seed, development
and test data annotation

Manual control flow

Unlabeled data

MUC-7 annotated seed,
development and

test data

Unlabeled data

PlaintextMUC-7
annotated data

POS tagged
and lemmatized tab

separated data

Test data with NE tags

Seed data with NE tags

Gazetteer data

Data lists

Tilde’s NER Data Preprocessing scripts

POS tagging and lemmatization
of seed, development and test data

Seed, development and
test data selection

POS tagging and lemmatization
of unlabeled data

NE tagged seed,
development and

test data

System properties

Tilde’s prepared Stanford NER
training property template

Tilde’s prepared Stanford NER
tagging property template

Extracted
gazetteer data

Tagging of development
and testing data

Tagging of unlabeled data

Refinement of development
and test data

Evaluation of module performance
on development and test data

NE module training
on training data

Prepare working directory
for current iteration

Copies training data to a new
directory (in the first iteration,
the training data is the seed
data). Prepares new training
and tagging property files.
Selects data from the unlabeled
data corpus for tagging.

Training data
with NE tags

Bootstrapped
data

Bootstrappled
NER models

Training
property files

Tagging
property template

Evaluation results

NE tagged
test data

NE tagged
development data

Refinement of
unlabeled data

Extraction of
new training data

Extraction of new
gazetteer data (optional)

Raw classified
data

No

System generated data

NE tagged
unlabeled data

Bootstrapped
data

Raw classified
data

Candidate training
data

Automatic control flow

Gazetteer data

Development data
with NE tags

Positive
development
data results?

Candidate gazetteer
data

Add temporary training and gazetteer
data to the fixed bootstrapping data

Yes (or positive results
not required)

No (and positive
results required)

{OR}

Figure 4 TildeNER bootstrapping architecture.

 Contract no. 248347

D2.6 V3.0 Page 75 of 164

The system allows also execution of several refinements (refer to section 3.1.5.4.3), which

allow fine-tuning of the system towards increasing recall (increases also the F-measure) or

precision of the system. Some of the refinements also try to correct corrupt NE tagging

(missing quotation marks, web addresses incorrectly tagged as entities, etc.). The Latvian and

Lithuanian models have been bootstrapped using fine-tuning for precision and using only

positive iterations.

The system also allows automatic extraction of gazetteer data, which is then used in order to

train new NER models in further iterations. In training of the Latvian NER model person

name, common organization and location gazetteers have been used.

As a sample the Figure 5 shows the tagging workflow of a plaintext document. The results

are saved in the MUC-7 annotated data format.

Stanford NER CRF Classifier

Tilde’s NER system

NE tagging

Refinement of the
NE tagged data

Addition of NE markup
to plaintext (Optional)

Raw classified
data

Plaintext

POS-tagging and
lemmatization of plaintext

Gazetteer data

NER model

Tilde’s prepared Stanford NER
tagging property file

NE tagged tab
separated file

Plaintext with
MUC-7 tags

Figure 5 Sample workflow of plaintext to MUC-7 annotated data tagging.

3.1.2 Changes from previous version

Changes include minor bug fixes and usage samples (“RUN” scripts for faster testing and

smaller learning curve for users). The system speed and data quality have not been affected

by the changes.

 Contract no. 248347

D2.6 V3.0 Page 76 of 164

3.1.3 Software dependencies and system requirements

TildeNER software dependencies are as follows:

 A modified version of Stanford NER (included in the toolkit)
9

 TreeTagger (if the user wishes to train a non-Baltic language NER model)
10

 Tagger.exe – the Tilde’s Baltic language POS-tagging web service interface on

Windows.

 tagger.sh – the Tilde’s Baltic language POS-tagging web service interface on

Linux.

 Java Runtime Environment (version 1.6.0)

 Perl (Windows - Strawberry Perl v5.12.1; Linux – Perl v5.10.1).

TildeNER system requirements are as follows:

 For training:

o A Linux operating system (for instance, Ubuntu 10.04.2);

o More than 4 GB RAM;

o Intel® Core™2 CPU (1.8 GHz for a single core) or faster.

 For tagging:

o A Linux or Windows (XP or newer) operating system;

o 2 or more (1.5 GB should be accessible) GB RAM;

o Intel® Pentium® 4 CPU 3.00GHz, 2992 Mhz, 1 Core(s), 2 Logical Processors

or faster.

The system requirements shown are based on the Linux training system and a Windows based

tagging system used for Latvian and Lithuanian model training and evaluation. Faster

performance can be achieved using a faster system and for larger annotated corpora more

RAM can be necessary (for the training stage).

The fast NE annotation tool included in the toolkit (NESimpleAnnotator – runs only on

Windows) depends on:

 Microsoft .NET Framework 4.0 Redistributable

The system requirements for NESimpleAnnotator are as follows:

 Windows (XP SP2 or newer) operating system;

 2 or more GB RAM;

Intel® Pentium® 4 CPU 3.00GHz, 2992 Mhz, 1 Core(s), 2 Logical Processors or faster.

9
 For commercial licensing please refer to http://otlportal.stanford.edu/techfinder/technology/ID=24628

10
 TreeTagger is available only for research, evaluation and teaching purposes as defined in the license

http://www.ims.uni-stuttgart.de/~schmid/Tagger-Licence; for commercial application, the user will have to use

a different POS-tagger.

http://otlportal.stanford.edu/techfinder/technology/ID=24628
http://www.ims.uni-stuttgart.de/~schmid/Tagger-Licence

 Contract no. 248347

D2.6 V3.0 Page 77 of 164

3.1.4 Installation

The TildeNER system does not require installation. Simply copy the whole “TildeNER”

directory to a directory from where you would like to run the named entity recognizer and

execute the Perl workflow scripts whenever it is necessary using a Perl interpreter (for

example, Strawberry Perl on Windows) from the command line (Command Prompt or

PowerShell on Windows or any programming language that supports shell executions).

The user will have to create a property file in order to execute the training or tagging scripts.

Sample property files are located within the “Sample_Data” subdirectory of the “TildeNER”

directory. The user will also have to alter the “gazette” parameter in the property files so that

the system is able to find the gazetteer data files in the user’s system (the sample addresses

are relative and will work only if the system’s working directory will be the TildeNER root

directory). The gazetteer files used for training of the Latvian and Lithuanian NER models

are located in the “LV_Gazetteer” and “LT_Gazetteer” subdirectories of the “Sample_Data”

directory. Please use the “/” directory separation character in gazetteer file addresses also on

Windows. The Stanford NER classifier does not process the Windows directory separation

character “\” correctly; therefore, the Linux variant should be used instead.

The Latvian and Lithuanian NER models and gazetteer data is located within the

“Sample_Data” directory. More details on the provided sample data can be found in section

3.1.5.6.

Dependency installation on a Linux OS:

 For installation of Perl refer to http://www.perl.org/get.html.

 For installation of Java refer to http://openjdk.java.net/install/.

Dependency installation on Windows OS:

 For installation of Perl refer to http://strawberryperl.com/.

 For installation of Java refer to

http://www.java.com/en/download/help/windows_manual_download.xml.

For installation of .NET Framework 4.0 Redistributable refer to

http://www.microsoft.com/download/en/details.aspx?id=17718

3.1.5 Execution instructions

The TildeNER system consists of multiple workflows (external execution scripts), which

create the general use case scenarios of the TildeNER system. Each of the workflows makes

use of internal execution scripts (see 3.1.5.3), which are developed to offer partial workflow

functionality and modules (see 3.1.5.4), which contain utility and functionality methods used

by the scripts. All Perl modules and scripts have well documented code; therefore, if any

additional questions arise, the user should refer to the comments within the code.

The system has two general use cases - the bootstrapping of a new NER model (see Figure 6)

and tagging of a plaintext document (see Figure 7).

http://www.perl.org/get.html
http://openjdk.java.net/install/
http://strawberryperl.com/
http://www.java.com/en/download/help/windows_manual_download.xml
http://www.microsoft.com/download/en/details.aspx?id=17718

 Contract no. 248347

D2.6 V3.0 Page 78 of 164

PreprocessMuc7DataDirectory.pl TagUnlabeledDataDirectory.pl

BootstrapNEModel.pl

{AND}

Bootstrapping Workflow Execution Sequence

Figure 6 NER model bootstrapping execution sequence.

It is necessary for the user to prepare and pre-process the seed, development, test and

unlabelled data corpora, therefore, the pre-processing scripts have to be executed prior to the

bootstrapping script. If the user uses his/her own pre-processing tools, which produce

compliant input data (refer to section 3.1.6.3for more details), the pre-processing scripts may

also be skipped.

NEMuc7TagPlaintext.pl

NETabSepTagPlaintext.pl

NETabSepTagTabSep.pl

Tagging Workflow Execution Sequence

User’s
choice

{O
R
}

NETabSepTagPlaintextList.pl

Figure 7 Single document tagging execution sequence.

The TildeNER system offers three different tagging workflows; therefore, the user has to

choose the appropriate tagging script according to the provided input data and the required

output data.

3.1.5.1 NESimpleAnnotator

As the TildeNER system requires annotated seed, development and test data in order to train a

NER model and tune the system for best performance, an annotation tool was developed in

order to allow fast annotation of plaintext documents (refer to section 3.1.6.1 for a format

description). The tool saves the annotated documents in the MUC-7 annotated data format

described in section 3.1.6.2.

For user manual and named entity annotation guidelines refer to the document “NE Markup

Guidelines.docx” that can be found in the “NESimpleAnnotator” subdirectory of the

 Contract no. 248347

D2.6 V3.0 Page 79 of 164

“TildeNER” directory. The annotation tool (“NESimpleAnnotator.exe”) can be found in the

same directory.

3.1.5.2 External execution scripts

The external execution scripts provide the main functionality of the TildeNER system. The

scripts are also part of the general use case scenarios. In order to provide assistance in

execution of the scripts the TildeNER package contains predefined Bash (“sh”; for Linux) and

Batch (“bat”; for Windows) scripts in the form “RUN-###.bat” or “RUN-###.sh” (where

“###” is the name of the external execution script, which command is executed by the script,

for instance, “RUN-PreprocessMuc7DataDirectory.bat”). The scripts make use of sample

property files, models and gazetteer files in the “Sample_Data” directory and the input data

(and also output data after execution) in the “TEST” directory. The scripts operate on data in

Latvian (the user has to make modifications to the scripts and provide additional data for

other language support).

3.1.5.2.1 Training, development and testing data pre-processing

To train a new model for an existing (Latvian, Lithuanian) or a new language, it is necessary

to provide training, testing and development data. It is up to the user to decide, how to divide

a named entity annotated corpus, but once the annotated data is created (and the format is

compliant to the MUC-7 annotated data specified in 3.1.6.2), the user can use the script

“PreprocessMuc7DataDirectory.pl” to perform all required data pre-processing.

The script performs data pre-processing on a single directory (subdirectories are not

processed) that contains MUC-7 annotated documents. For each file it separates the NE

annotation from the plaintext, tokenizes, POS-tags and lemmatizes the plaintext and

combines the tab-separated outcome of the plaintext with the separated NE annotation in a

tab-separated data file (see 3.1.6.3 for the data format description).

The command line to call the pre-processing for a single directory is as follows:

perl ./PreprocessMuc7DataDirectory.pl [1: Input directory] [2: Output

directory] [3: Input file extension] [4: Output file extension] [5:

Language] [6: POS-tagger]

The script requires in total six arguments passed to the script in a fixed order:

1. The source (input) data directory path.

2. The target (output) data directory path.

3. The input file extension (suggested is “txt” for MUC-7 annotated plaintext).

4. The output file extension (suggested is “gold” for human annotated data).

5. The language of the input documents. The language has to be supported by the

POS-tagger.

6. The POS-tagger to use for pre-processing.

Available POS-tagger and language pairs are defined in 3.1.5.5. For information on how to

add other POS-taggers refer to section 3.1.7.

 Contract no. 248347

D2.6 V3.0 Page 80 of 164

The script depends on “ProcessDirectory.pl” and “PrepareNEData.pl” scripts and in a

general use case has to be executed only once – to prepare annotated data.

For testing purposes and to provide execution examples

“RUN-PreprocessMuc7DataDirectory.bat” (Windows) and

“RUN-PreprocessMuc7DataDirectory.sh” (Linux) scripts are provided. The scripts are

preconfigured to execute “PreprocessMuc7DataDirectory.pl” on MUC-7 annotated

documents (with “txt” extensions) located in directory “./TEST/gold_muc7_plaintext_in”

using the POS-tagger “Tagger” for Latvian “lv”. Results will be saved in

“./TEST/gold_tab_sep_out”.

3.1.5.2.2 Unlabeled data pre-processing

If the user wants to train a named entity recognition model using bootstrapping, it is required

to pre-process all unlabelled data documents. The script “TagUnlabeledDataDirectory.pl”

performs data pre-processing on a single directory (subdirectories are not processed) that

contains plaintext documents. For each file it executes tokenization, lemmatization and POS-

tagging and saves the results in tab-separated output file (see 3.1.6.4 for the data format

description).

The command line to call the pre-processing for a single directory is as follows:

perl ./TagUnlabeledDataDirectory.pl [1: Language] [2: POS-tagger] [3: Input

directory] [4: Output directory] [5: Input file extension] [6: Output file

extension] [7: Delete (or not) temporary files]

The script requires in total seven arguments passed to the script in a fixed order:

1. The language of the plaintext documents. The language has to be supported by

the POS-tagger.

2. The POS-tagger to use for pre-processing.

3. The source (input) data directory path.

4. The target (output) data directory path.

5. The input file extension (suggested is “txt” for plaintext).

6. The output file extension (suggested is “pos” for unlabeled data).

7. Indicator, whether to delete temporary files (deletes temporary files if "1", keeps

if "0").

Available POS-tagger and language pairs are defined in 3.1.5.4.5. For information how to add

other POS-taggers refer to section 3.1.7.

The script depends on the “Tag.pm” module and in a general use case has to be executed only

once – to prepare unlabeled data.

For testing purposes and to provide execution examples

“RUN-TagUnlabeledDataDirectory.bat” (Windows) and

“RUN-TagUnlabeledDataDirectory.sh” (Linux) scripts are provided. The scripts are

preconfigured to execute “TagUnlabeledDataDirectory.pl” on unlabeled plaintext documents

(with “txt” extensions) located in directory “./TEST/plaintext_in” using the POS-tagger

“Tagger” for Latvian “lv”. Results will be saved in “./TEST/unannotated_tab_sep_out”.

 Contract no. 248347

D2.6 V3.0 Page 81 of 164

3.1.5.2.3 Training a Named Entity Recognition Model Using Bootstrapping

Once the user has pre-processed training (initially seed data), development, test and

unlabelled data, the bootstrapping of a new NER model can be started. The script

“BootstrapNEModel.pl” iteratively trains NER models on training data, in each iteration

evaluates current model’s performance on development and test data, tags the unlabelled data

(a selected subsection in each iteration) and extracts a maximum number of new top ranked

unique training samples for the next iteration.

The uniqueness constraint used is the uniqueness of sentence morpho-syntactic tag

sequences. Refer to section 3.1.6.3 for an example of Tilde’s morpho-syntactic tag and what

to do if the user’s POS-tagger does not assign morpho-syntactic tags to tokens.

The bootstrapping script also offers gazetteer automatic extraction from the unannotated

corpora and usage of only positive (increase the results on development data) iterations in

new training data extraction.

The command line to start the bootstrapping is as follows:

perl ./BootstrapNEModel.pl [1: Seed list directory] [2: Seed file

extension] [3: Development list directory] [4: Development file extension]

[5: Test list directory] [6: Test file extension] [7: Unlabelled data

directory] [8: Unlabelled file extension] [9: Training property template]

[10: Tagging property template] [11: Working directory] [12: Number of

iterations] [13: Unlabelled documents to tag] [14: Sentences to select per

NE tag] [15: Refinement order definition string] [16: Bootstrapped

gazetteer file] [17: Use only positive iterations] [18: Positive iterator

condition]

The script requires in total eighteen arguments passed to the script in a fixed order (the last

three are optional):

1. The seed list directory path.

2. The seed list data file extension (suffix before the point).

3. The development data directory path.

4. The development list data file extension (suffix before the point).

5. The test data directory path.

6. The test list data file extension (suffix before the point).

7. The unlabelled data directory path.

8. The unlabelled list data file extension (suffix before the point).

9. The path of the training property template (Stanford NER). The template defines,

which feature functions to use in training, and contains a list of Stanford NER

system properties. It should not contain entries of seed list data files as the

template will be changed by the script in all iterations. A sample training property

template (“LV_Training_prop_template.prop”) can be found in the

“Sample_Data” subdirectory of the “TildeNER” directory.

10. The path of the tagging property template (Stanford NER). The template defines,

which feature functions to use when tagging documents, and contains a list of

Stanford NER system properties. A sample tagging property template

 Contract no. 248347

D2.6 V3.0 Page 82 of 164

(“LV_Tagging_prop_template.prop”) can be found in the “Sample_Data”

subdirectory of the “TildeNER” directory.

11. The working directory where all results of all iterations will be stored. This

should be an empty directory as all existing files will be overwritten and none

non-conflicting files will be deleted (this could cause the system to work

incorrectly if wrong training or gazetteer data would be present).

12. Bootstrapping iteration amount (for Latvian and Lithuanian 200 were used as a

maximum).

13. The number of unlabelled documents to be tagged and processed in a single

bootstrapping iteration. For Latvian and Lithuanian “500” was used.

14. The number of sentences to extract as new training data for the next iteration for

each NE tag. For Latvian and Lithuanian “30” was used.

15. The refinement order definition string – defines which and in which order

refinements are executed on NE tagged data. For more information on the

refinement order definition string refer to section 3.1.5.4.3. For Latvian “L N S

R_0.7 C T_0.90 A” was used to run bootstrapping in order to improve precision

and “L N S R_0.4 T_0.70 A” was used for F-measure.

16. The path of the gazetteer file for extracted named entity samples. If the user does

not want automatic gazetteers to be extracted an empty value (“”) may be passed

instead.

17. The indicator, whether to use only positive bootstrapping iterations. "1" should be

passed if only positive iterations should be used.

18. The positive iteration condition. The value is used only if the previous parameter

is set to “1”. Allowed values are:

a. “P” for precision (“P” means that only those iterations will be considered

positive, in which precision will increase over the last best precision).

b. “R” for recall.

c. “F” for F-measure.

d. “A” for accuracy.

e. Everything else means that all values will be required to increase for a positive

iteration.

The script will store each NE model in its own iteration directory and also produce a

combined result file for all iterations. It is up to the user to decide, which model, from which

iteration to use further after the bootstrapping will be finished.

The script depends on the “NETrainAndEvaluate.pl” and “NETagDirectory.pl” scripts and

“BootstrapTools.pm” and “NEUtilities.pm” modules. The script will have to be run multiple

times if the user wishes to test various configuration options.

For testing purposes and to provide execution examples the “RUN-BootstrapNEModel.sh”

(Linux) script is provided. A Windows version is not included as training requires a Linux

operating system. The script is preconfigured to execute “BootstrapNEModel.pl” so that seed

 Contract no. 248347

D2.6 V3.0 Page 83 of 164

data is taken from “./TEST/seed_in” (file extension – “gold”), development data is taken from

“./TEST/dev_in” (file extension – “gold”), test data is taken from “./TEST/gold_tab_sep_in”

(file extension – “gold”) and the unannotated data is taken from

“./TEST/unannotated_tab_sep_in” (file extension – “pos”). The script makes use of the

sample property templates located in “./Sample_Data/LV_Training_prop_template.prop” and

“./Sample_Data/LV_Tagging_prop_template.prop”. The working directory is set to

“./TEST/bootstrap_out”. For system testing purposes the bootstrapping iteration amount is

limited to 5, unlabeled document amount is limited to 5 and only one sentence will be

executed in each bootstrapping run for every NE category. The refinement order definition

string is set to “L N S R_0.7 C T_0.90 A”, which will raise precision. The extracted gazetteer

data will be saved in “./TEST/bootstrap_out/bootstrapped_gazetteer.txt”. The example script

does not make use of the positive iteration functionality.

3.1.5.2.4 Plaintext to MUC-7 document tagging

Once the user has acquired a trained named entity recognition model for the required

language, the tagging scripts may be executed. The first of the tagging scripts is the

“NEMuc7TagPlaintext.pl” script, which tags a plaintext document (for the format refer to

section 3.1.6.1) for named entities and saves the result as a plaintext document with named

entities marked with MUC-7 tags (for the format refer to section 3.1.6.2).

The command line to call the NE-tagging for a single plaintext file is as follows:

perl ./NEMuc7TagPlaintext.pl [1: NER model path] [2: Plaintext input file]

[3: MUC-7 output file] [4: Tagging property file] [5: Language] [6: POS-

tagger] [7: Keep temporary files] [8: Refinement order definition string]

The script requires in total eight arguments passed to the script in a fixed order:

1. The path to the NER model. Latvian and Lithuanian trained models are available

in the “Sample_Data” subdirectory of the “TildeNER” directory –

“LV_Model_P.ser.gz” (Latvian bootstrapped for increased precision),

“LV_Model_F.ser.gz” (increased F-measure), “LT_BASELINE_Model.ser.gz”

(The baseline Lithuanian NER model) and “LT_Model_F.ser.gz” (Lithuanian

bootstrapped for increased F-measure). The Lithuanian baseline model already

shows high precision (with applied refinement methods) and the bootstrapping

did not result in increased results (therefore, the baseline model is included).

2. The path of the plaintext file, which has to be tagged.

3. The path of the MUC-7 annotated output file (an existing file will be overwritten).

4. The Stanford NER tagging property file. Sample tagging property file

(“LV_P_Tagging_prop_sample.prop” (for the precision increasing model) or

“LV_F_Tagging_prop_sample.prop” (for the F-measure increasing model)) can

be found in the “Sample_Data” subdirectory of the “TildeNER” directory (note

that this is not the same as the template property file as used in bootstrapping!).

5. The language of the plaintext document. The language has to be supported by the

POS-tagger.

6. The POS-tagger to use for pre-processing of the plaintext document.

 Contract no. 248347

D2.6 V3.0 Page 84 of 164

7. Indicator, whether to keep temporary files. If “1”, temporary files will be kept.

Any other value means that temporary files will be deleted.

8. The refinement order definition string – defines which and the order in which

refinements are executed on NE tagged data. For more information on the

refinement order definition string refer to section 3.1.5.4.3. For Latvian “L N S

R_0.7 C T_0.90 A” achieves the highest precision and “L N S R_0.4 T_0.70 A”

achieves the highest F-measure (the respective (see point 1) NER models and

property files (see point 4) have to be used to achieve the best required results).

Available POS-tagger and language pairs are defined in section 3.1.5.4.5. For information

how to add other POS-taggers refer to section 3.1.7.

The script depends on the “NEPreprocess.pm”, “Tag.pm” and “NERefinements.pm” Perl

modules and the Stanford NER module “stanford-ner.jar”. The script will have to be run

once for each plaintext document.

For testing purposes and to provide execution examples the “RUN-NEMuc7TagPlaintext.bat”

(Windows) and “RUN-NEMuc7TagPlaintext.sh” (Linux) scripts are provided. The scripts are

preconfigured to execute “NEMuc7TagPlaintext.pl” so that input data is taken from the file

“./TEST/plaintext_in.txt”, the “./Sample_Data/LV_Model_P.ser.gz” NER model and the

“./Sample_Data/LV_P_Tagging_prop_sample.prop” property file are used in tagging, the

POS-tagger “Tagger” for Latvian (“lv”) is used and the refinement order definition string is

set to “L N S R_0.7 C T_0.90 A”, which will raise precision. The results will be saved in

“./TEST/muc-7_plaintext_out.txt”.

3.1.5.2.5 Plaintext to MUC-7 document list tagging

The ACCURAT workflow for NE/Term mapping allows NE tagging of lists of files.

Therefore, the script “NEMuc7TagPlaintextList.pl” was created. The script tags each

plaintext document (for the format refer to section 3.1.6.1) specified in an I/O document pair

list (for the format refer to section 3.1.6.7) and saves each plaintext document with named

entities marked with MUC-7 tags (for the format refer to section 3.1.6.2) in files also

specified by the d document pair list.

The command line to call the NE-tagging using a document pair list file is as follows:

perl ./NEMuc7TagPlaintextList.pl [1: NER model path] [2: Document pair list

file] [3: Tagging property file] [4: Language] [5: POS-tagger] [6:

Refinement order definition string]

The script requires in total six arguments passed to the script in a fixed order:

1. The path to the NER model. Latvian and Lithuanian trained models are available

in the “Sample_Data” subdirectory of the “TildeNER” directory –

“LV_Model_P.ser.gz” (Latvian bootstrapped for increased precision),

“LV_Model_F.ser.gz” (increased F-measure), “LT_BASELINE_Model.ser.gz”

(The baseline Lithuanian NER model) and “LT_Model_F.ser.gz” (Lithuanian

bootstrapped for increased F-measure). The Lithuanian baseline model already

shows high precision (with applied refinement methods) and the bootstrapping

did not result in increased results (therefore, the baseline model is included).

 Contract no. 248347

D2.6 V3.0 Page 85 of 164

2. The path of the I/O document pair list file (for the format refer to section 3.1.6.7).

Each line of the document contains two tab-separated (“\t” character) entries – the

plaintext input file (see section 3.1.6.1) and the MUC-7 annotated output file (see

section 3.1.6.2).

3. The Stanford NER tagging property file. Sample tagging property file

(“LV_P_Tagging_prop_sample.prop” (for the precision increasing model) or

“LV_F_Tagging_prop_sample.prop” (for the F-measure increasing model)) can

be found in the “Sample_Data” subdirectory of the “TildeNER” directory (note

that this is not the same as the template property file as used in bootstrapping!).

4. The language of the plaintext document. The language has to be supported by the

POS-tagger.

5. The POS-tagger to use for pre-processing of the plaintext document.

6. The refinement order definition string – defines which and the order in which

refinements are executed on NE tagged data. For more information on the

refinement order definition string refer to section 3.1.5.4.3. For Latvian “L N S

R_0.7 C T_0.90 A” achieves the highest precision and “L N S R_0.4 T_0.70 A”

achieves the highest F-measure (the respective (see point 1) NER models and

property files (see point 4) have to be used to achieve the best required results).

Available POS-tagger and language pairs are defined in section 3.1.5.4.5. For information

how to add other POS-taggers refer to section 3.1.7.

The script depends on the “NEMuc7TagPlaintext.pl” script.

For testing purposes and to provide execution examples the

“RUN-NEMuc7TagPlaintextList.bat” (Windows) and “RUN-NEMuc7TagPlaintextList.sh”

(Linux) scripts are provided. The scripts are preconfigured to execute

“NEMuc7TagPlaintextList.pl” so that input data is taken from the file

“./TEST/plaintextList_in.txt”, the “./Sample_Data/LV_Model_P.ser.gz” NER model and the

“./Sample_Data/LV_P_Tagging_prop_sample.prop” property file are used in tagging, the

POS-tagger “Tagger” for Latvian (“lv”) is used and the refinement order definition string is

set to “L N S R_0.7 C T_0.90 A”, which will raise precision.

3.1.5.2.6 Plaintext to tab-separated document tagging

The second of the tagging scripts is the “NETabSepTagPlaintext.pl” script, which tags a

plaintext document (for the format refer to section 3.1.6.1) for named entities and saves the

result as a tab-separated, tokenized, POS-tagged, lemmatized and NE-tagged document (for

the format refer to section 3.1.6.5).

The command line to call the NE-tagging for a single plaintext file is as follows:

perl ./NETabSepTagPlaintext.pl [1: NER model path] [2: Plaintext input

file] [3: Tab-separated output file] [4: Tagging property file] [5:

Language] [6: POS-tagger] [7: Keep temporary files] [8: Refinement order

definition string]

 Contract no. 248347

D2.6 V3.0 Page 86 of 164

The script requires in total eight arguments passed to the script in a fixed order:

1. The path to the NER model. Latvian and Lithuanian trained models are available

in the “Sample_Data” subdirectory of the “TildeNER” directory –

“LV_Model_P.ser.gz” (Latvian bootstrapped for increased precision),

“LV_Model_F.ser.gz” (increased F-measure), “LT_BASELINE_Model.ser.gz”

(The baseline Lithuanian NER model) and “LT_Model_F.ser.gz” (Lithuanian

bootstrapped for increased F-measure). The Lithuanian baseline model already

shows high precision (with applied refinement methods) and the bootstrapping

did not result in increased results (therefore, the baseline model is included).

2. The path of the plaintext file, which has to be tagged.

3. The path of the tab-separated output file (an existing file will be overwritten).

4. The Stanford NER tagging property file. A sample tagging property file

(“LV_P_Tagging_prop_sample.prop” (for the precision increasing model) or

“LV_F_Tagging_prop_sample.prop” (for the F-measure increasing model)) can

be found in the “Sample_Data” subdirectory of the “TildeNER” directory.

5. The language of the plaintext document. The language has to be supported by the

POS-tagger.

6. The POS-tagger to use for pre-processing of the plaintext document.

7. Indicator, whether to keep temporary files. If “1”, temporary files will be kept.

Any other value means that temporary files will be deleted.

8. The refinement order definition string – defines which and the order in which

refinements are executed on NE tagged data. For more information on the

refinement order definition string refer to section 3.1.5.4.3. For Latvian “L N S

R_0.7 C T_0.90 A” achieves the highest precision and “L N S R_0.4 T_0.70 A”

achieves the highest F-measure (the respective (see point 1) NER models and

property files (see point 4) have to be used to achieve the best required results).

Available POS-tagger and language pairs are defined in 3.1.5.4.5. For information how to add

other POS-taggers refer to section 3.1.7.

The script depends on the “Tag.pm” and “NERefinements.pm” Perl modules and the

Stanford NER module “stanford-ner.jar”. The script will have to be run once for each

plaintext document.

For testing purposes and to provide execution examples the

“RUN-NETabSepTagPlaintext.bat” (Windows) and “RUN-NETabSepTagPlaintext.sh”

(Linux) scripts are provided. The scripts are preconfigured to execute

“NETabSepTagPlaintext.pl” so that input data is taken from the file “./TEST/plaintext_in.txt”,

the “./Sample_Data/LV_Model_P.ser.gz” NER model and the

“./Sample_Data/LV_P_Tagging_prop_sample.prop” property file are used in tagging, the

POS-tagger “Tagger” for Latvian (“lv”) is used and the refinement order definition string is

set to “L N S R_0.7 C T_0.90 A”, which will raise precision. The results will be saved in

“./TEST/tab_sep_out.txt”.

 Contract no. 248347

D2.6 V3.0 Page 87 of 164

3.1.5.2.7 Tab-separated document to tab-separated document tagging

The third (and last one) of the tagging scripts is the “NETabSepTagTabSep.pl” script, which

tags named entities in an already pre-processed (for instance, with the script

“TagUnlabeledDataDirectory.pl”) document (for the format refer to section 3.1.6.4) and

saves the result as a tab-separated, tokenized, POS-tagged, lemmatized and NE-tagged

document (for the format refer to section 3.1.6.5).

The command line to call the NE-tagging for a single plaintext file is as follows:

perl NETabSepTagTabSep.pl [1: NER model path] [2: Tab-separated input file]

[3: Tab-separated output file] [4: Tagging property file] [5: Keep

temporary files] [6: Refinement order definition string]

The script requires in total six arguments passed to the script in a fixed order:

1. The path to the NER model. Latvian and Lithuanian trained models are available

in the “Sample_Data” subdirectory of the “TildeNER” directory –

“LV_Model_P.ser.gz” (Latvian bootstrapped for increased precision),

“LV_Model_F.ser.gz” (increased F-measure), “LT_BASELINE_Model.ser.gz”

(The baseline Lithuanian NER model) and “LT_Model_F.ser.gz” (Lithuanian

bootstrapped for increased F-measure). The Lithuanian baseline model already

shows high precision (with applied refinement methods) and the bootstrapping

did not result in increased results (therefore, the baseline model is included).

2. The path of the tab-separated input file, which has to be tagged.

3. The path of the tab-separated output file (an existing file will be overwritten).

4. The Stanford NER tagging property file. A sample tagging property file

(“LV_P_Tagging_prop_sample.prop” (for the precision increasing model) or

“LV_F_Tagging_prop_sample.prop” (for the F-measure increasing model)) can

be found in the “Sample_Data” subdirectory of the “TildeNER” directory.

5. Indicator, whether to keep temporary files. If “1”, temporary files will be kept.

Any other value means that temporary files will be deleted.

6. The refinement order definition string – defines which and the order in which

refinements are executed on NE tagged data. For more information on the

refinement order definition string refer to section 3.1.5.4.3. For Latvian “L N S

R_0.7 C T_0.90 A” achieves the highest precision and “L N S R_0.4 T_0.70 A”

achieves the highest F-measure (the respective (see point 1) NER models and

property files (see point 4) have to be used to achieve the best required results).

The script depends on the “NEPreprocess.pm” and “NERefinements.pm” Perl modules and

the Stanford NER module “stanford-ner.jar”. The script will have to be run once for each

tab-separated document.

For testing purposes and to provide execution examples the

“RUN-NETabSepTagTabSep.bat” (Windows) and “RUN-NETabSepTagTabSep.sh” (Linux)

scripts are provided. The scripts are preconfigured to execute “NETabSepTagTabSep.pl” so

that input data is taken from the file “./TEST/tab_sep_in.pos”, the

“./Sample_Data/LV_Model_P.ser.gz” NER model and the

 Contract no. 248347

D2.6 V3.0 Page 88 of 164

“./Sample_Data/LV_P_Tagging_prop_sample.prop” property file are used in tagging and the

refinement order definition string is set to “L N S R_0.7 C T_0.90 A”, which will raise

precision. The results will be saved in “./TEST/tab_sep_out.pos”.

3.1.5.3 Internal execution scripts

The internal execution scripts define a set of scripts that do not require to be manually

executed by the user, but in some cases may be helpful to the user (if an alternative use case

is required). Although, the external execution scripts provided execution examples with “bat”

and “sh” scripts, the internal scripts do not provide such examples and are meant to be

executed by a more advanced user with more knowledge on Perl. All of the following

internal execution scripts are integrated within the external execution scripts.

3.1.5.3.1 Executing a process on a directory

Many processes within the general use case scenarios require a single process to be executed

on all files within a directory. Therefore, the script “ProcessDirectory.pl” is provided, which

can execute any process, which requires one input file and one output file and additional

parameters on a whole directory.

The command line to execute a process on a directory is as follows:

perl ProcessDirectory.pl [1: Input directory] [2: Output directory] [3:

Input file extension] [4: Output file extension] [5: Process to execute]

[6: Middle parameters] [7: End parameters]

The script requires in total seven arguments passed to the script in a fixed order (the last two

are optional):

1. The input directory from which to read files.

2. The output directory to which the process will write files.

3. The input file extension (suffix before the point). Only the files with the correct

extension will be processed.

4. The output file extension (suffix before the point).

5. The process to run (with before input file parameters).

6. The parameters between input and output files (optional).

7. The parameters after the output file (optional).

For each file in the input directory Perl executes the following command:

`[Process to execute] "[Input file]" [Middle parameters] "[Output file]"

[End parameters]`

This means that only those processes are supported, which require parameters to be passed in

the specified order.

3.1.5.3.2 Pre-processing a single MUC-7 annotated document

In order to pre-process MUC-7 annotated data for training, each document has to be

processed with the script “PrepareNEData.pl” (integrated within the general use case in

section 3.1.5.2.1). For each MUC-7 annotated document (the format is specified in 3.1.6.2)

 Contract no. 248347

D2.6 V3.0 Page 89 of 164

the script separates the NE annotation from the plaintext, tokenizes, POS-tags and lemmatizes

the plaintext and combines the tab-separated outcome of the plaintext with the separated NE

annotation in a tab-separated data file (see 3.1.6.3 for the data format description).

The command line to call the pre-processing for a single file is as follows:

perl PrepareNEData.pl [1: Language] [2: POS-tagger] [3: Input file] [4:

Output file] [5: Delete temp files]

The script requires in total five arguments passed to the script in a fixed order (the last one is

optional):

1. The language of the input document. The language has to be supported by the

POS-tagger.

2. The POS-tagger to use for pre-processing.

3. The input file path.

4. The output file path.

5. Indicator, whether to delete temporary files. “-D” means that temporary files will

be deleted.

The script depends on “Tag.pm” and “NEPreprocess.pm” modules.

3.1.5.3.3 Training and evaluating a single NER model

Training and evaluation of a single NER module within a single bootstrapping iteration is

done by the script “NETrainAndEvaluate.pl”. It can also be used to individually train NER

models without bootstrapping. Training, development and test data formats are defined in

section 3.1.6.3. The tagging result data formats are defined in section 3.1.6.5. The gazetteer

data format (if the user requires gazetteers to be used in training and tagging within the

Stanford NER property template) is defined in section 3.1.6.6.

The command line to call training and evaluation for a single NER model is as follows:

perl ./NETrainAndEvaluate.pl [1: Training list directory] [2: Test list

directory] [3: Development list directory] [4: Training file extension] [5:

Test file extension] [6: Development file extension] [7: Working directory]

[8: Training property template] [9: Tagging property template] [10:

Refinement order definition string]

The script requires in total ten arguments passed to the script in a fixed order:

1. The training data directory path.

2. The test data directory path.

3. The development data directory path.

4. The training list data file extension (suffix before the point).

5. The test list data file extension (suffix before the point).

6. The development list data file extension (suffix before the point).

7. The working directory where all results will be stored. This should be an empty

directory as all existing files will be overwritten and none non-conflicting files

will be deleted (this could cause the system to work incorrectly if wrong training

or gazetteer data would be present).

 Contract no. 248347

D2.6 V3.0 Page 90 of 164

8. The path of the training property template (Stanford NER). The template defines,

which feature functions to use in training, and contains a list of Stanford NER

system properties. It should not contain entries of training data files as the

template will be changed by the script. A sample training property template

(“LV_Training_prop_template.prop”) can be found in the “Sample_Data”

subdirectory of the “TildeNER” directory.

9. The path of the tagging property template (Stanford NER). The template defines,

which feature functions to use when tagging documents, and contains a list of

Stanford NER system properties. A sample tagging property template

(“LV_Tagging_prop_template.prop”) can be found in the “Sample_Data”

subdirectory of the “TildeNER” directory.

10. The refinement order definition string – defines which and in which order

refinements are executed on NE tagged data. For more information on the

refinement order definition string refer to section 3.1.5.4.3. For Latvian “L N S

R_0.7 C T_0.90 A” achieves the best precision and “L N S R_0.4 T_0.70 A”

achieves the best F-measure.

The script depends on the “NEUtilities.pm” module, “NETagDirectory.pl” script and the

Stanford NER module “stanford-ner.jar”.

3.1.5.3.4 Evaluating a NER system

It is important to evaluate a system when training a new NER model in order to evaluate its

performance in comparison with different systems/NER models. Therefore, the script

“NEEvaluation_v2.pl” has been developed. The script evaluates the precision, recall,

accuracy and F-measure (

) of all named entity token categories (B-ORG, I-ORG,

etc.), all full named entities (LOCATION, ORGANIZATION, etc.) and the total (average

system performance) for single tokens (TOTAL_TOKEN) and full named entities

(TOTAL_NE) by providing two directories – a gold data directory (for data formats refer to

section 3.1.6.3) and a test result data directory (for data formats refer to section 3.1.6.5). The

script requires for the directories to have equal file names (extensions/suffixes before the dot

in file names may differ). A file is produced, which contains evaluation results. A sample file

contents is as follows:

TOTAL_NE 39.81 73.95 - 51.76

MONEY 27.03 56.34 - 36.53

LOCATION 53.11 72.32 - 61.24

PERSON 48.00 90.00 - 62.61

ORGANIZATION 23.83 78.23 - 36.53

DATE 41.52 74.47 - 53.31

TIME 7.77 66.67 - 13.92

PRODUCT 26.77 54.84 - 35.98

TOTAL_TOKEN 45.65 84.01 89.54 59.16

B-MON 43.24 90.14 99.82 58.44

I-DATE 71.63 93.15 98.75 80.98

 Contract no. 248347

D2.6 V3.0 Page 91 of 164

B-LOC 59.89 81.54 98.45 69.06

I-PERS 65.43 89.83 99.66 75.71

I-LOC 13.60 54.20 98.98 21.74

B-PERS 48.50 90.94 99.33 63.26

I-ORG 23.60 71.35 98.19 35.47

I-TIME 26.14 86.79 99.73 40.18

B-ORG 27.36 89.80 98.54 41.94

B-DATE 46.26 82.98 98.94 59.40

B-TIME 10.68 91.67 99.81 19.13

I-MON 42.27 87.58 99.60 57.02

I-PROD 26.00 57.96 99.35 35.90

B-PROD 29.40 60.22 99.32 39.51

The columns in the tab separated result file represent the following in the exact sequence:

result category, recall, precision, accuracy and F-measure. For full named entities accuracy

results will not be given (accuracy can be estimated on single token performance only and not

on multiple token sequences as the interpretation of non-entities and their possible sequences

is ambiguous).

The command line to call the evaluation script is as follows:

perl ./NEEvaluation_v2.pl [1: Gold data directory] [2: Test result

directory] [3: Output file]

The script requires in total three arguments passed to the script in a fixed order:

1. The path of the directory containing the human annotated/gold documents.

2. The path of the directory containing the test result documents.

3. The path to the evaluation result output file.

The script depends on the “NEUtilities.pm” Perl module.

3.1.5.3.5 Tagging and evaluating files in a directory

As the bootstrapping and NE training scripts require tagging of multiple full directories of

files (development, test and unlabelled data), the script “NETagDirectory.pl” is provided.

The script executes Stanford NER NE classification, NE refinements and also evaluation

(optional) on all files in a directory. The files have to be pre-processed (for input data formats

refer to section 3.1.6.3 and 3.1.6.4). The script creates tab-separated NE-tagged files (for the

output data format refer to section 3.1.6.5).

The command line to call the NE-tagging for a single directory is as follows:

perl ./NETagDirectory.pl [1: NER model path] [2: Input directory] [3:

Output directory] [4: Input file extension] [5: Output file extension] [6:

Tagging property file] [7: Evaluation result file] [8: Refinement order

definition string]

 Contract no. 248347

D2.6 V3.0 Page 92 of 164

The script requires in total eight arguments passed to the script in a fixed order (the last two

are optional):

1. The path to the NER model.

2. The directory from which to read the tab-separated pre-processed files.

3. The directory to which the NE-tagged tab-separated files will be written.

4. The extension (suffix before the dot) of the input files.

5. The extension (suffix before the dot) of the output files.

6. The path to the NE tagging properties file.

7. The evaluation file path (optional and only if test/development data is passed in

the input data! May be empty if the last parameter is required).

8. The refinement order definition string - defines the order in which refinements are

executed on NE tagged data.

The script depends on the “NERefinements.pm” Perl module and the Stanford NER module

“stanford-ner.jar”.

3.1.5.4 Internal modules

Internal modules are not supposed to be called externally (manually) by the user, however the

scripts contain many useful functions, which could be useful to the user if he/she would want

to extend the system or create his/her own NER system.

3.1.5.4.1 Bootstrapping module

The Perl module “BootstrapTools.pm” provides a set of functions used in the bootstrapping

workflow. A list of functions used in bootstrapping is as follows:

1. GetTopSentencesFromDirectory - analyses all files within a directory and

returns an array, which contains at most N top ranked sentences for each NE

token. Only sentences with unique morphological tags are selected (analysing

also existing training data). If the POS tagger does not support morpho-syntactic

tags, the uniqueness constraint is not used.

2. ExtractNewGazetteerData - Extracts new gazetteer data from a directory of NE-

tagged files into a target file. Only those named entities are extracted, which are

considered the most likely using a threshold and are unique and non-existing in

the existing gazetteer data files defined in the provided Stanford NER property

file. Extracted named entity length is limited to less than or equal to ten tokens.

3. PrintSent – Prints sentences from an array to a new training data file. The method

is used after sentence extraction in each bootstrapping iteration to save the newly

extracted training data.

The module depends on the “NEUtilities.pm” and “NERefinements.pm” Perl modules.

 Contract no. 248347

D2.6 V3.0 Page 93 of 164

3.1.5.4.2 Data pre-processing module

The Perl module “NEPreprocess.pm” provides a set of functions used in document pre-

processing before NE-tagging and training. It also provides a method to mark plaintext with

NE tags. A list of functions used in the workflows is as follows:

1. RemoveEmptyLines - Removes empty lines from a tab-separated document. The

method allows correction of tokenizer errors (wrong sentence borders) and at the

same time allows tokens from 2 lines in input data to be separated within two

different sentences. This process makes it possible to prohibit cross-line NE-

tagging. According to a selected option all empty lines are kept (“1”), all empty

lines, where 2 or more empty lines are one after another are kept (“2”), all lines

are removed (all other values).

2. Detagger – Splits NE tags and plaintext from a MUC-7 annotated document. NE

tags and the plaintext are saved in separate documents. After calling this method,

the plaintext can be POS-tagged.

3. AddNewTags – After POS-tagging of a plaintext document, this method

combines the tab-separated tokenized, POS-tagged and lemmatized document

with the NE tags, which were split from the plaintext using the Detagger method.

4. FindTokenPos – If the POS-tagger used in POS-tagging of a plaintext document

does not produce positional token information that would allow NE-markup to be

applied to the plaintext (for instance, TreeTagger does not produce any – line

from, column from, line to, column to), the method analyses the POS-tagged

document and the plaintext and assigns positional information for each token.

5. AddMarkupToPlaintext – Adds NE markup from a tab-separated NE tagged

document to the plaintext document. The plaintext document should contain the

exact number of tokens (and the same tokens) as in the tab-separated document.

The produced output file is a MUC-7 annotated plaintext.

The module depends on the “NEUtilities.pm” Perl module.

3.1.5.4.3 NE-tagged data refinement module

The Perl module “NERefinements.pm” provides a set of functions used in NE classification

refinement. As the Stanford NER may produce inconsistencies in the tagged data (for

instance, when only one quotation mark is tagged or the classifier does not obey the one

sense per discourse rule), refinements can improve the overall NE-tagging results. A list of

available refinement and refinement utility functions (except testing functions) is as follows:

1. LoadTabSepFile – Reads all tokens form a tab separated document into an array.

The refinement methods operate only with the token array and do not read tab

separated documents. As the whole document is read into memory, it is strongly

advised to not use large files that could fill the system’s random access memory.

2. SaveTabSepDoc – Saves the token array into a tab separated document. This

method is called after all refinements are applied. The method

AddMissingLineBreaks can be called only after the tab-separated document is

saved.

 Contract no. 248347

D2.6 V3.0 Page 94 of 164

3. CalculateProbibility – Calculates the average value of an array’s elements. The

method is used to calculate full named entity probabilities from single tokens (as

a NE consists of a sequence of tokens).

4. GetFullNETagsFromTokens – The method is used in most of the refinement

methods to find named entity positions (for example, NE “X” of type

“LOCATION” starting at token “Y” and ending at token “Z”) within an array of

NE tagged tokens.

5. WriteNEtagsInTokens – Each of the refinement methods makes changes in the

original token array. This method applies the changes to the existing token array’s

named entities.

6. CombinedRefsOnFile – Executes refinements in a predefined order or in a

required order if the user provides a “Refinement order definition string”.

Refinements may be executed on a single file multiple times if such are defined in

the refinement order definition string. If a Refinement order definition string is

not given, the default order “L N S R_0.7 C T_0.90” is used. This configuration

proved to achieve better precision on Latvian development data (at the same time

considering recall).

7. ConsolidateEqualEntities – Finds named entities (token sequences) with equal

lemmas, which are classified to different NE categories and consolidates them

(assigns only one NE category) according to the highest likely NE category (the

average probability takes named entity total count and individual category counts

into account). If an ambiguous situation is found where it is not possible to

distinguish between a most likely category no changes are applied. This method

tries to apply the “One sense per discourse” rule on named entities.

8. RemoveLowProbNETags – Removes named entities (the NE category is replaced

with the non-entity category “O”) with the average probability lower than a given

threshold.

9. TagEqualLemmas – Tags missing lemma (tokens classified as non-entities)

sequences if the same lemma sequences in different positions have been tagged as

named entities. A threshold is applied to the existing named entities in order to

find missing ones.

10. CleanBracketsAndQuotations – Finds named entities with brackets or quotation

marks in tokens and tries to re-tag the named entities if it contains any unclosed

quotation marks or brackets. If the bracket or quotation mark is in the middle of

the named entity, the method tries to tag all tokens till a nearly located (up to a

threshold in length) closing bracket or quotation mark (in the appropriate

direction – left or right, depending on the missing symbol) token as part of the

named entity. If the bracket or quotation mark is at the end or beginning of the

entity, removes it from the named entity.

11. RemoveCorruptStringTokensFromNETags – Re-tags named entities containing

a pre-defined list of strings as non-entities if the tokens containing the strings are

in the middle of named entities or removes the tokens from the named entity if

 Contract no. 248347

D2.6 V3.0 Page 95 of 164

they are in the beginning or at the end of the named entity. For instance, internet

addresses containing protocol indicative strings (“://”) are removed.

12. RemoveCorruptStringNETags – Re-tags the whole named entity as a non-entity

if the named entity of a predefined category (for instance, “ORG”) contains more

than allowed number of predefined strings (each string is counted independently

of other strings). For instance, a person or an organization is not allowed to

contain more than one “/” symbol in the name.

The Refinement order definition string may consist of any number and any order of space

separated refinement identifiers. Each identifier represents a single refinement function.

Some functions (for instance, “R” and “T”) require thresholds to be passed in the form

“[ID]_0.#” together with the identifier (“[ID]” represents the identifier; “#” represents

decimal digits after 0). Available identifiers are:

1. “A” for the method AddMissingLineBreaks – this method has to be called after

all other refinements as all other refinements operate with a token array, but this

method operates with a tab-separated document. Also, in order to control that the

method is called as the last one, all refinements after this method’s call are

ignored. The method is described in section 3.1.5.4.4.

2. “C” for the method ConsolidateEqualEntities

3. “L” for the method CleanBracketsAndQuotations

4. “N” for the method RemoveCorruptStringNETags

5. “S” for the method RemoveCorruptStringTokensFromNETags

6. “R_0.#” for the method RemoveLowProbNETags

7. “T_0.#” for the method TagEqualLemmas

The module depends on the “NEUtilities.pm” Perl module.

3.1.5.4.4 Utility functions for named entity recognition

The Perl module “NEUtilities.pm” provides a set of useful utility functions used in the whole

named entity recognition system. A list of functions is as follows:

1. IsValidGazetteerType – Returns “1” if the short NE tag (for instance, “LOC”,

“ORG”, “PERS”, etc.) is valid for gazetteer extraction; if not the method returns

“0”. The method is used in bootstrapping, when extracting new gazetteer data. If

the user wishes to change, which named entities are extracted for gazetteer data,

the appropriate value (“1” or “0”) has to be changed in this method. The method

is used when pre-processing MUC-7 annotated data. This method (and the next

three methods) is created to minimize changes, which would have to be made if

the user would want to change the number of NE categories that the system

supports.

2. GetShortTagType - Returns a short NE tag type from a MUC-7 NE tag type. For

instance, passing “LOCATION”, the method would return “LOC”.

 Contract no. 248347

D2.6 V3.0 Page 96 of 164

3. GetNEtagType - Returns a MUC-7 NE tag type from a short NE tag type. For

instance, passing “LOC”, the method would return “LOCATION”. The method is

used when applying NE markup to plaintext.

4. GetMucTagName - Returns a MUC-7 tag name from a short NE tag type. For

instance, passing “LOC”, the method would return “ENAMEX”. The method is

used when applying NE markup to plaintext.

5. AddMissingLineBreaks – Post-processes POS-tagged and NE tagged files and

creates a result file, which contains NE tagged data from the NE tagged file

including empty lines from the POS tagged document. In cases where named

entities span over multiple lines, the NE is either split in two entities or the

trailing tokens of the second entity are re-tagged as non-entity tokens. The

selection (re-tagging or removal) is controlled by a threshold of the first token’s

(of the second line) classification probability.

6. CreateDirectoryFileList – Creates a comma separated list of file addresses in a

directory and returns the result as a string. The method is used to create the

training file list for a bootstrapping iteration.

7. AddPropertyToFile – Appends a new property at the end of the Stanford NER

property file as a new line. The method does not check, whether the property is

already existing.

8. ReadPropertyFromFile – Reads a property’s value from a Stanford NER

property file. If the file contains multiple equal properties, the first property’s

value is returned.

9. ChangePropertyInFile – Changes a property’s value in a Stanford NER property

file. If the file contains multiple equal properties, all found property values are

changed.

10. AppendAFileToAFile – Appends a file’s contents to another file.

11. ReadExistingGazetteerData – Reads all lines of the tab-separated gazetteer files

and returns a hash table containing unique lines.

12. CopyFilesFromDirectory – Copies files with a specified extension from one

directory to another, thereby changing the file extension to a new extension (if

required).

13. MoveFilesFromDirectory – Moves files with a specified extension from one

directory to another, thereby changing the file extension to a new extension (if

required).

14. CopyFilesFromArray – Copies files specified in an array to a target directory

without changing file extensions.

15. MoveFilesFromArray – Moves files specified in an array to a target directory

without changing file extensions.

16. GetRandomFiles – Returns a number of random file addresses (in an array)

containing a specified extension from a directory.

 Contract no. 248347

D2.6 V3.0 Page 97 of 164

17. GetTokenTotalResultLine – Finds and returns the line containing token total

evaluation results in a given evaluation file (which is created by the

“NEEvaluation_v2.pl” script).

18. GetTokenResultEntry – Finds and returns a specific token total result entry in a

given evaluation file (which is created by the “NEEvaluation_v2.pl” script). The

result entry is specified by a column number. The column numbers are: “1” -

recall, “2” - precision, “3” - accuracy, “4” - F-measure.

19. GetNETotalResultLine – Finds and returns the line containing full named entity

total evaluation results in a given evaluation file (which is created by the

“NEEvaluation_v2.pl” script).

20. GetTime – For logging purposes returns the current system time.

The module does not have additional dependencies.

3.1.5.4.5 Tokenization, lemmatization and POS-tagging module

The Perl module “Tag.pm” provides POS-tagging functionality for data pre-processing. The

module is extendable if it is required by the user to use a different POS-tagger (the POS-

tagger has to produce compliant output data). The possibility to extend the module is

described in section 3.1.7.

The only method that the module contains is “TagText”, which POS-tags a single plaintext

document using a specified POS-tagger and language. The results are saved in a tab-separated

data file. The method creates a set of temporary files, some of which are required by the

tagging and data pre-processing workflows. The method, however, allows also removal of

temporary files, but the option is not used in the current workflows.

The currently supported POS-tagger and language combinations are as follows:

1. “Tagger” – “et” (Estonian), “lv” (Latvian) and “lt” (Lithuanian). “Tagger”

represents the Tilde’s POS-tagging web service for the Baltic languages and is the

suggested choice for these languages.

2. “Tree” – “bg” (Bulgarian), “de” (German), “el” (Greek), “en” (English), "es"

(Spanish), "et" (Estonian), “fr” (French) and “it” (Italian). “Tree” represents the

language independent part-of-speech tagger TreeTagger.

Note that TildeNER currently supports only Latvian and Lithuanian named entity recognition.

Other languages require Stanford NER models to be either acquired or trained.

The module depends on the “NEPreprocess.pm” Perl module.

3.1.5.4.6 Stanford NER

The main classification of named entities and training is done by the Stanford NER

conditional random field classifier; therefore, the TildeNER system depends on the “stanford-

ner.jar” module to be available. The standard downloadable version
11

, however, won’t be

11

 Stanford NER non-modified version: http://nlp.stanford.edu/software/CRF-NER.shtml.

http://nlp.stanford.edu/software/CRF-NER.shtml

 Contract no. 248347

D2.6 V3.0 Page 98 of 164

compliant with the workflows as it does not support the required input and output data

standards. Therefore, a modified version has been included in the toolkit under the

“TildeNER” directory.

3.1.5.5 POS-taggers included in the toolkit

The TildeNER system has integration with two POS-taggers – Tilde’s Baltic language POS-

tagging web service (Tagger.exe and tagger.sh) and the TreeTagger (should be included in

the “Treetagger” subdirectory in the “TildeNER” directory). Both taggers may be used for

research purposes and non-commercial usage. This toolkit does not provide commercial

licensing of these POS-taggers.

It is advised to use Tilde’s Baltic language POS-tagging web service for Latvian, Lithuanian

and Estonian. For all other languages the user will have to acquire TreeTagger and make

modifications as described below.

TreeTagger can be accessed and freely downloaded from http://www.ims.uni-

stuttgart.de/projekte/corplex/TreeTagger/. The user will need to download:

 The user platform’s tagger package (where the source code to the “tree-tagger” or

“tree-tagger.exe” application is located).

 The tagging scripts’ package (where the “tokenize.pl” script and the language

dependent abbreviation file is located).

 The language dependent parameter file for TreeTagger.

In order to integrate TreeTagger within TildeNER, the user will have to:

 Copy the “tree-tagger” executables, the “tokenize.pl” script, the abbreviation file

and the parameter file to the “Treetagger” subdirectory of “TildeNER”.

 Modify “tokenize.pl” so that it would accept the following execution command

from within the “Treetagger” directory.

perl tokenize.pl [Input File] [Output File] [Clitic Identifier]

[Abbreviation Usage] [Abbreviation File]

The script requires in total five parameters:

 The path of the file that has to be tokenized.

 The path of the output file where the results will be written.

 An optional parameter, which identifies sequences that will be cut off before and

after words. May be “-e” for English, “-f” for French and “-i” for Italian. For

other languages an empty string will be passed if abbreviation usage will be

specified or nothing if no abbreviations will be used.

 An optional parameter that identifies whether abbreviations will be used to

tokenize the input file. Allowed values are “-a” for abbreviation usage and

nothing for no abbreviations.

 An optional parameter that identifies the path to the abbreviation file located

within the “Treetagger” subdirectory of the “TildeNER” directory.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

 Contract no. 248347

D2.6 V3.0 Page 99 of 164

For supported languages, parameter files and abbreviation files please refer to the “Tag.pm”

script.

3.1.5.6 NER models and data samples included in the toolkit

As the TildeNER system has been developed for Latvian and Lithuanian named entity

recognition, the system also provides data required for named entity tagging of documents in

both languages.

The “Sample_Data” subdirectory of the “TildeNER” directory, therefore, provides:

1. NER models for both languages:

1.1. “LV_Model_P.ser.gz” – Latvian bootstrapped model for increased precision

(use the “L N S R_0.7 C T_0.90 A” refinement order definition string and the

“LV_P_Tagging_prop_sample.prop” property file to achieve the best results);

1.2. “LV_Model_F.ser.gz” – Latvian bootstrapped model for increased F-measure

(use the “L N S R_0.4 T_0.70 A” refinement order definition string and the

“LV_F_Tagging_prop_sample.prop” property file to achieve the best results);

1.3. “LT_Model_F.ser.gz” – Lithuanian bootstrapped model for increased F-

measure (use the “L N S R_0.4 T_0.70 A” refinement order definition string

and the “LT_F_Tagging_prop_sample.prop” property file to achieve the best

results);

1.4. “LT_BASELINE_Model.ser.gz” – Lithuanian baseline model that achieves

the best precision (use the “L N S R_0.7 C T_0.90 A” refinement order

definition string and the “LT_B_Tagging_prop_sample.prop” property file to

achieve the best results);

2. Tagging property files required by Stanford NER

(“LV_F_Tagging_prop_sample.prop”, “LV_P_Tagging_prop_sample.prop”,

“LT_F_Tagging_prop_sample.prop” and “LT_B_Tagging_prop_sample.prop”);

3. Gazetteer data used in training and required when tagging documents. The data is

located in the “LV_Gazetteer” and “LT_Gazetteer” subdirectories (separately for

Latvian and Lithuanian). The gazetteer data contains:

3.1. Latvian location gazetteer “LV_LOC_GAZETTEER.txt”;

3.2. Latvian organization gazetteer “LV_ORG_GAZETTEER.txt”;

3.3. Latvian organization type gazetteer “LV_ORG_INIT_GAZETTEER.txt”;

3.4. Latvian person name gazetteer “LV_PERS_GAZETTEER.txt”;

3.5. Latvian precision bootstrapped gazetteer

“LV_PRECISION_BOOTSTRAPPED_GAZETTEER.txt” (contains person

names, locations and organizations extracted in bootstrapping);

3.6. Latvian F-measure bootstrapped gazetteer

“LV_FMEASURE_BOOTSTRAPPED_GAZETTEER.txt” (contains person

names, locations and organizations extracted in bootstrapping);Lithuanian

location gazetteer “LT_LOC_GAZETTEER.txt”;

 Contract no. 248347

D2.6 V3.0 Page 100 of 164

3.7. Lithuanian organization gazetteer “LT_ORG_GAZETTEER.txt”;

3.8. Lithuanian person name gazetteer “LT_PERS_GAZETTEER.txt”;

3.9. Lithuanian F-measure bootstrapped gazetteer

“LT_FMEASURE_BOOTSTRAPPED_GAZETTEER.txt” (contains person

names, locations and organizations extracted in bootstrapping);

The sample data directory contains also training and tagging property template files

(“{LV|LT}_{Training|Tagging}_prop_template.prop”) that were used to train and test the

provided Latvian and Lithuanian NER models.

Note that all property files and templates have to be updated with the user system’s local

paths so that the system can access gazetteer data! If not updated, the system will

unexpectedly crash if the working directory will not be set to the TildeNER root directory.

The user has to update the “gazette” property in all property files and templates in use. Also

on Windows the Linux directory separation character “/” should be used instead of the

Windows character “\”.

3.1.6 Input/Output data formats

All documents used in the TildeNER system should be encoded using UTF-8 encoding. Other

encodings are not supported. The TildeNER system is BOM insensitive; however, it is

advised for the user to strip the BOM characters before processing data as some POS-taggers

may operate incorrectly. It is also advised because of the same reason to remove all control

characters except LF (“\n”), CR (“\r”) and “TAB” (“\t”) from the input data.

All input and output data files have to contain file extensions (for instance, “*.txt” for

plaintext documents, “*.pos” for POS-tagged documents, etc.); otherwise, the system may

perform unexpectedly.

3.1.6.1 Plaintext Format

The first and the most simple data format for named entity tagging is plaintext. A plaintext

document is not allowed to contain mark-up within the text. All mark-up will be considered

as part of the plaintext and processed together with the text.

3.1.6.2 MUC-7 Annotated Data Format

The manual annotation tool NESimpleAnnotator saves documents in the MUC-7 annotated

data format. The format allows MUC-7 named entity tags, as shown below (for each named

entity type), to be embedded within the plaintext.

<ENAMEX TYPE="ORGANIZATION">LVRTC</ENAMEX>

<ENAMEX TYPE="PERSON">Krišjānis Peters</ENAMEX>

<ENAMEX TYPE="LOCATION">Latvijā</ENAMEX>

<ENAMEX TYPE="PRODUCT">Windows 7</ENAMEX>

<NUMEX TYPE="MONEY">Ls 7011 mēnesī</NUMEX>

<TIMEX TYPE="TIME">ap 21—22</TIMEX>

<TIMEX TYPE="DATE">1994.gadā</TIMEX>

 Contract no. 248347

D2.6 V3.0 Page 101 of 164

A sample annotated document (shown is only one sentence) is as follows:

Kompānijai <ENAMEX TYPE="ORGANIZATION">Lattelecom</ENAMEX>, savukārt pieder

23% <ENAMEX TYPE="LOCATION">Latvijas</ENAMEX> mobilā operatora <ENAMEX

TYPE="ORGANIZATION">Latvijas Mobilais Telefons</ENAMEX> kapitāldaļu.

If other annotation tools (not the NESimpleAnnotator) are to be used, the user has to make

sure that named entities do not start or end with a whitespace because in this case the pre-

processing workflow won’t be able to align the annotation borders with the token borders

within the POS-tagged document. If border mismatches will be found, the named entity

mark-up will be removed.

3.1.6.3 Tab-separated Training/Development/Testing Data Format

The annotated data pre-processing workflow (PreprocessMuc7DataDirectory.pl) produces

data in a tab-separated, POS-tagged, tokenized, lemmatized and NE-tagged format. The

training, evaluation and bootstrapping scripts require training (also seed), development and

test data to be prepared in this format.

The tab-separated format contains (in a fixed and non-changeable sequence):

1. The original word form

2. Part of speech

3. Lemma

4. Morpho-syntactic tag (may be also non-positional, but as a sample the Tilde’s

positional 28 category morpho-syntactic tag is given)

5. Line in which the token starts in the original plaintext document

6. Column in which the token starts in the original plaintext document

7. Line in which the token ends in the original plaintext document

8. Column in which the token ends in the original plaintext document

9. Named entity category

A sample pre-processed test data sentence is as follows:

Pēc S pēc S----------------pdp------f- 24 100 24 102 B-DATE

divām M divi M-fpd---c-----------------l- 24 104 24 108 I-DATE

dienām N diena N-fpd---------n-----------l- 24 110 24 115 I-DATE

, T , T--------------------------, 24 116 24 116 O

14 D 14 D--pg----------------------- 24 118 24 119 B-DATE

. T . T--------------------------. 24 120 24 120 I-DATE

novembrī N novembris N-msl---------n-----------l- 24 122 24 129 I-DATE

pilsētā N pilsēta N-fsl---------n-----------l- 24 131 24 137 O

iebrauca V iebraukt Vs----3--i----------------l- 24 139 24 146 O

Ziemeļu N Ziemele N-fpg---------n-----------f- 24 148 24 154 B-ORG

alianses N alianse N-fsg---------n-----------l- 24 156 24 163 I-ORG

tanki N tanks N-mpn---------n-----------l- 24 165 24 169 O

. SENT . T--------------------------. 24 170 24 170 O

 Contract no. 248347

D2.6 V3.0 Page 102 of 164

The data suggests that the sentence is form the 24
th

 line starting from the 100
th

 character in

the line. The sentence ends in the 24
th

 line and the last character is in the 170
th

 position of the

line. The sentence contains three named entities – two DATE and one ORGANIZATION

named entity.

The first three columns are the standard TreeTagger output format. As TreeTagger does not

produce the morpho-syntactic tag as well as the positional indicators, the workflow’s pre-

processing script is able to align tokens with the plaintext (therefore, support for all POS-

taggers, which produce data in the standard TreeTagger format, can be added – as long as

these can be executed using a command line, read and write data using input and output data

files and operate using the UTF-8 encoding).

The Tilde’s morpho-syntactic tag for the Baltic languages consists of 28 positions – part of

speech (N, V, T, etc.), tense (present, past, future, etc.), gender (masculine, feminine, neutral

or common), number (singular, plural, dual), case (nominative, genitive, dative, etc.), degree

of comparison (positive, comparative, diminutive, superlative), person (first, second, third),

adjective definiteness marker (indefinite, definite), numeral type (cardinal, ordinal, collective

or numeral), mode (indicative, imperative, conditional, etc.), noun type (place name,

surname, proper name, etc. – reserved, but not implemented), voice (active, passive),

semantic subclass of pronouns (personal, reflexive, possessive, etc.), subtype of participles

(indeclinable, partly declinable, progressive, etc.), diminutive marker for nouns (diminutive,

not diminutive, short), reflexivity of verbs (non-reflexive and reflexive), negative prefix

marker (negative, affirmative), number required for agreement with prepositions (singular,

plural), case required for agreement with prepositions (genitive, dative, accusative or

instrumental), place of preposition (preposition or postposition), verb group (1 to 9 and

perfective, imperfective or two-aspect), semantic type of adverb (gradual, existential,

interrogative, etc.), relation type of conjunction (coordinating, subordinating, subject clause,

etc.), Wh marker (reserved – not in use), transitivity (transitive, intransitive – reserved for

Russian verbs), animation (animate, inanimate – reserved for Russian nouns), usage of

capital letters (lowercase, starts with a capital, uppercase), punctuation mark (“.”, “?”, “!”,

etc.).

The morpho-syntactic tag is used by the Stanford NER classifier as a whole string and is not

analysed as a positional morpho-syntactic tag (character by character); therefore, the system

also supports other POS-tagger morpho-syntactic tags. If a POS-tagger does not assign a

morpho-syntactic tag to a token, the new training data uniqueness constraint in the

bootstrapping algorithm is not used and new training data is extracted based on the named

entity ranking within sentences. Also the training and tagging property files should be altered

so that Stanford NER does not use Morpho-syntactic tag feature functions (the property

“useMorphoTags” has to be set to “false”).

The format specifies that each token has to have a named entity category. Non-entities

receive the category “O”. The first token in a named entity receives a category that starts with

“B-”; all other tokens within a named entity receive a category that starts with an “I-”. It is

not allowed for a named entity to start with an “I-” token.

 Contract no. 248347

D2.6 V3.0 Page 103 of 164

All possible (currently supported) categories are:

“B-ORG” and “I-ORG” for “ORGANIZATION” tokens;

“B-LOC” and “I-LOC” for “LOCATION” tokens;

“B-PERS” and “I-PERS” for “PERSON” tokens;

“B-PROD” and “I-PROD” for “PRODUCT” tokens;

“B-DATE” and “I-DATE” for “DATE” tokens;

“B-TIME” and “I-TIME” for “TIME” tokens;

“B-MON” and “I-MON” for “MONEY” tokens;

“O” for non-entities.

The document format also requires 2 empty lines to be present for newline characters in the

plaintext. Sentences may be separated using one empty line, but that is not mandatory if the

TreeTagger “SENT” category is used to mark sentence ending characters.

3.1.6.4 Tab-separated Pre-processed Unannotated Data Format

The unannotated data pre-processing workflow (TagUnlabeledDataDirectory.pl) produces

data in a tab-separated, POS-tagged, tokenized and lemmatized format. The only difference

from the previous format is that it does not contain named entity categories. A sample

sentence of the format is as follows:

Sobrīd - Sobrīd ---------------------------- 0 271 0 276

Latvijā N Latvija N-fsl---------n-----------f- 0 278 0 284

ir V būt Vp----3--i----------7-----l- 0 286 0 287

77 D 77 D--p------------------------ 0 289 0 290

pilsētas N pilsēta N-fpa---------n-----------l- 0 292 0 299

. SENT . T--------------------------. 0 300 0 300

For descriptions of the columns refer to the previous section 3.1.6.3.

3.1.6.5 Tab-separated NE-Tagged Data Format

The tagging scripts (within the bootstrapping and single document tagging workflows)

produce named entity tagged data in a tab-separated, POS-tagged, tokenized, lemmatized and

NE-tagged format similar to the pre-processed annotated data described in section 3.1.6.3.

The only difference is that each token contains (as the last column) the probability with

which the particular NE category has been assigned to the token by the Stanford NER CRF

classifier.

 Contract no. 248347

D2.6 V3.0 Page 104 of 164

A sample sentence of the format is as follows:

Skolotāja N skolotājs N-msg---------n-----------f- 11 4123 11 4131

 O 0.9607617498899327

un C un C---------------------c---l- 11 4133 11 4134

 O 0.9983287984939869

policijas N policija N-fsg---------n-----------l- 11 4136 11 4144

 O 0.9966184704168756

virsnieka N virsnieks N-msg---------n-----------l- 11 4146 11 4154

 O 0.9972953832284743

mēnešalga N mēnešalga N-fsn---------n-----------l- 11 4156 11 4164

 O 0.99467356585981

svārstās V svārstīties Vp----3--i-----y----------l- 11 4166 11 4173

 O 0.9997877203504323

ap S ap S----------------pdp------l- 11 4175 11 4176

 O 0.8406855682177047

240 D 240 D--pg----------------------- 11 4178 11 4180

 B-MON 0.7120957375851391

latiem N lats N-mpd---------n-----------l- 11 4182 11 4187

 I-MON 0.8652995897915107

. SENT . T--------------------------. 11 4188 11 4188

 O 0.9997774220023308

3.1.6.6 Gazetteer Data Format

The last data format used in the TildeNER system is the gazetteer data. The gazetteer data has

to be in a tab-separated format. The first column has to be the entry category (may be freely

defined by the user as each category will form a new feature function within the NER

system). The second column has to contain the named entities. If the named entity consists of

multiple tokens, these have to be passed using a space as a separator symbol.

A sample gazetteer document is as follows.

LOC Āraiši

LOC Āraišu ezers

PERS Adalberts

PERS Adela

PERS Adelaida

ORG_INIT SIA

ORG_INIT Ltd .

ORG_INIT AS

ORG Lattelecom

ORG Microsoft

ORG Ford

ORG Delta Air Lines

The user may use multiple gazetteer documents and divide them as he/she requires. All

gazetteer files have to be defined in both tagging and training property files. The system may

 Contract no. 248347

D2.6 V3.0 Page 105 of 164

produce unexpected results if different gazetteer lists/categories will be used in training and

tagging. The sample property files contain a gazetteer entry:

gazette =

/home/NER/CORPUS/GAZETTEERS/LV_PERS_GAZETTEER.txt,/home/NER/CORPUS/GAZETTEE

RS/LV_LOC_GAZETTEER.txt,/home/NER/CORPUS/GAZETTEERS/LV_ORG_INIT_GAZETTEER.t

xt,/home/NER/CORPUS/GAZETTEERS/LV_ORG_GAZETTEER.txt

The paths to the gazetteer files have to be manually set by the user on each system before

tagging or training! If the user does not want gazetteers to be used in training and later

tagging, the property has to be removed from the property files. However, the user will not be

able to use the Latvian and Lithuanian NER models or the results may be unexpected if some

gazetteer files will be missing when tagging documents.

3.1.6.7 Input/Output Document Pair List File Format

The I/O document pair list file format is used in the ACCURAT toolkit’s NE/term mapping

workflow in order to allow NE/term tagging of multiple files. The document pair list is a tab-

separated text file where each line contains two elements – the input file path and the output

file path. The file paths should be absolute when using the ACCURAT toolkit to avoid

unexpected behaviour. The format sample is as follows:

[Input File Path 1] [Output File Path 1]

…

[Input File Path N] [Output File Path N]

A sample file with real values is as follows:

C:\NE-plain-EN\Apple.txt C:\NE-plain-EN\Apple.txt.NE_tagged

C:\NE-plain-EN\FightClub.txt C:\NE-plain-EN\FightClub.txt.NE_tagged

C:\NE-plain-EN\Latvia.txt C:\NE-plain-EN\Latvia.txt.NE_tagged

C:\NE-plain-EN\Microsoft.txt C:\NE-plain-EN\Microsoft.txt.NE_tagged

C:\NE-plain-EN\USA.txt C:\NE-plain-EN\USA.txt.NE_tagged

3.1.7 Integration with external tools

To integrate the TildeNER system within another system that requires NE-tagging, the target

system has to be able to execute command line commands. The most of the programming

languages contain libraries to execute command line commands. All standard TildeNER

execution commands are described in section 3.1.5.

To add another POS-tagger to the data pre-processing workflows, the user has to modify the

script in the module Tag.pm.

First of all the POS-tagger has to produce output at least in the TreeTagger format (or the full

unlabelled data format described in section 3.1.6.4). If the POS-tagger does not produce the

output in the required format, the user has to provide a wrapper system that calls the POS-

tagger and converts the data to the required format.

 Contract no. 248347

D2.6 V3.0 Page 106 of 164

If the POS-tagger produces the required output, the user has to create a new “elsif” block in

the “TagText” function after the “elsif ($_[1] eq "Tagger")” block and before the “else” block

according to the following structure:

elsif ($_[1] eq "[TAGGER_CODE]") {

 if($_[0] eq '[LANGUAGE_CODE]') {

 #Call the POS tagger to tokenize and tag plaintext.

 @agrs=("$_[2]","$outputDir$filename.Tree"); #Set additional arguments

here!

 system "[PATH_TO_YOUR_POS_TAGGER]",@agrs;

 #Add token positions to the POS-tagger file using the POS-tagged file and

the plaintext file.

 NEPreprocess::FindTokenPos("$_[2]"

,"$outputDir$filename.Tree","$outputDir$filename.temp");

 }

 else { print STDERR "[Tag::TagText] ERROR: no such tagger-language

combination: \"$_[1]\"-\"$_[0]\""; die; }

}

If the POS-tagger produces output data, also assigning positional token information (as

defined in section 3.1.6.4), the user may also skip the execution of the “FindTokenPos”

method. In this case the “elsif” statement has to be as follows:

elsif ($_[1] eq "[TAGGER_CODE]") {

 if($_[0] eq '[LANGUAGE_CODE]') {

 #Call the POS tagger to tokenize and tag plaintext.

 @agrs=("$_[2]","$outputDir$filename.temp"); #Set additional arguments

here!

 system "[PATH_TO_YOUR_POS_TAGGER]",@agrs;

 }

 else {

 print STDERR "[Tag::TagText] ERROR: no such tagger-language combination:

\"$_[1]\"-\"$_[0]\""; die; }

}

The user has to define:

1. A code for the POS-tagger (“[TAGGER_CODE]”)

2. The language that the POS-tagger supports (“[LANGUAGE_CODE]”)

3. Additional arguments (if any required) or rearrange existing arguments (if

required) in the array “@agrs” (“$_[2]” represents the input file and

“$outputDir$filename.temp” and “$outputDir$filename.Tagger” represent the

output files – these parameters are mandatory and should not be changed)

4. Specify the POS-tagger’s path in the user’s system

(“[PATH_TO_YOUR_POS_TAGGER]”);

 Contract no. 248347

D2.6 V3.0 Page 107 of 164

The user may also replace the “Tag.pm” module if the existing module prohibits some sort of

integration, but the input/output parameters (including the temporary file “*.temp”) should be

the same; otherwise the system may crash.

3.1.8 Contact

For further information and technical support installing and/or running this tool, please email

to Mārcis Pinnis: marcis.pinnis@tilde.lv.

3.1.9 Useful references

The TildeNER system is inspired and the ideas are based on the following papers:

1. Andrew Carlson, Sue Ann Hong, Kevin Killourhy and Sophie Wang, Active

Learning for Information Extraction via Bootstrapping, 2009.

2. Dan Wu, Wee Sun Lee, Nan Ye and Hai Leong Chieu, Domain adaptive

bootstrapping for named entity recognition, EMNLP '09 Proceedings of the 2009

Conference on Empirical Methods in Natural Language Processing: Volume 3 -

Volume 3, Association for Computational Linguistics Stroudsburg, PA, USA,

2009

3. David Nadeau, Semi-Supervised Named Entity Recognition: Learning to

Recognize 100 Entity Types with Little Supervision, PhD Thesis, Ottawa,

Canada, 2007

4. Erik F. Tjong Kim Sang and Fien De Meulder, Introduction to the CoNLL-2003

Shared Task: Language-Independent Named Entity Recognition, CONLL '03

Proceedings of the seventh conference on Natural language learning at HLT-

NAACL 2003 - Volume 4, Association for Computational Linguistics,

Stroudsburg, PA, USA, 2003.

5. Fien De Meulder and Walter Daelemans, Memory-based named entity

recognition using unannotated data, CONLL '03 Proceedings of the seventh

conference on Natural language learning at HLT-NAACL 2003 - Volume 4,

Association for Computational Linguistics Stroudsburg, PA, USA, 2003.

6. Jing Jiang, Chengxiang Zhai, Instance weighting for domain adaptation in NLP,

Proceedings of the 45th Annual Meeting of the Association of Computational

Linguistics, Association for Computational Linguistics, Prague, Czech Republic,

2007

7. Jon Patrick, Casey Whitelaw and Robert Munro, SLINERC: the Sydney

Language-Independent Named Entity Recogniser and Classifier, COLING-02

proceedings of the 6th conference on Natural language learning - Volume 20,

Association for Computational Linguistics Stroudsburg, PA, USA, 2002.

8. Zornitsa Kozareva, Bootstrapping named entity recognition with automatically

generated gazetteer lists, EACL '06: Proceedings of the Eleventh Conference of

the European Chapter of the Association for Computational Linguistics: Student

Research Workshop, Association for Computational Linguistics Stroudsburg, PA,

USA, 2006.

mailto:marcis.pinnis@tilde.lv

 Contract no. 248347

D2.6 V3.0 Page 108 of 164

TildeNER methods have been published in:

Mārcis Pinnis, Latvian and Lithuanian named entity recognition with TildeNER.

Proceedings of the 8
th

 international conference on Language Resources and Evaluation

(LREC 2012), Istanbul, Turkey, 2012.

The NE annotated data standard is based on the MUC-7 NE annotation guidelines:

http://www-nlpir.nist.gov/related_projects/muc/proceedings/ne_task.html.

The POS-tagged data standard is an extended version of the TreeTagger format:

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.

The Stanford NER CRF classifier is used as the core named entity classification system:

http://nlp.stanford.edu/software/CRF-NER.shtml.

3.2 OpenNLP wrapper

3.2.1 Overview and purpose of the tool

In the multi-lingual NE and term mapper (see section 5.1) we make use of OpenNLP to tag

named entities for the English documents. OpenNLP is an existing tool and is not

implemented within the ACCURAT project. The output of this system is, therefore, different

from the input format of the NE mapper. The wrapper:

 enables that the output of OpenNLP is of the same format as the input files to the

mapper

 provides a scenario to users where the mapper can be run on existing annotated

data

 enables the users to use other NER systems to prepare the input to the mapper.

3.2.2 Changes from previous version

The following bugs have been resolved from the previous version:

 possible overlapping of NE markup when converting from the internal to the

MUC-7 compliant output format;

 wrong output encoding – changed to UTF-8.

3.2.3 Software dependencies and system requirements

The wrapper is implemented in the programming language Java. It requires the following

settings to run:

 JRE (Java Runtime Environment) 1.6

 1+ GB RAM

3.2.4 Installation

The wrapper does not require any installation.

http://www-nlpir.nist.gov/related_projects/muc/proceedings/ne_task.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://nlp.stanford.edu/software/CRF-NER.shtml

 Contract no. 248347

D2.6 V3.0 Page 109 of 164

3.2.5 Execution instructions

The OpenNLP wrapper can be run using the following command:

java –jar OpenNLPWrapper.jar [fileList]

fileList: a tab separated list of files. On each line the file contains the file name (with the full

path) to be annotated by the wrapper, a tab for separation and the file name (with the full

path) where the results of the annotation should be saved. The output file will be

automatically generated by the wrapper. For a sample of the format of the file list refer to

section 3.1.6.7 of the TildeNER system.

Please also make sure that you run the wrapper from the folder where all the required

resources are saved. These resources are the entire folders (docs, data and testdocs) and are

provided with the wrapper.

3.2.6 Input/Output data formats

Input to the wrapper is text that is encoded in UTF-8.

Output of the OpenNLP wrapper is text with NEs tagged. NEs are tagged according to MUC-

7 style (for a more detailed format description refer to section 3.1.6.2 of the TildeNER

system). For more details see the description for the NE and term mapper.

3.2.7 Contact

For further information and technical support installing and/or running this tool, please email

to Ahmet Aker: a.aker@dcs.shef.ac.uk.

3.3 NERA1: Named Entity Recognition for English and

Romanian

3.3.1 Overview and purpose of the tool

NERA1 tool is designed to identify and label Named Entities in raw or already pre-processed

texts. It is designed to work for English and Romanian and to identify 6 types of Named

Entities: PERSON, ORGANIZATION, LOCATION, PRODUCT, DATE, TIME and MONEY.

The current version focuses mainly on the first 3 types and works without any use of

gazetteers. First, it identifies named entities boundaries using regular expressions, and then, it

labels the entities according to a Maximum Entropy classifier trained on contextual features.

NERA1 needs the input files to be pre-processed and in order to do this, it calls the TTL web

service (hosted at RACAI). However, as Romanian is a language with diacritics and many

Romanian texts are missing these diacritics, when dealing with it, NERA1 is able call the

diacritics insertion web service (also hosted at RACAI), if requested.

Important facts:

• NERA1 can receive as input raw text files with no pre-processing: in this case TTL web

service is called for pre-processing and internet connection is needed;

• NERA1 can work on existing annotated data if the already existing annotation is compliant

with RACAI’s XML resource format.

mailto:a.aker@dcs.shef.ac.uk

 Contract no. 248347

D2.6 V3.0 Page 110 of 164

3.3.2 Changes from the previous version

Aside from bug fixing, there are no functional modifications and/or changes to the user’s

interface of this tool.

3.3.3 Software dependencies and system requirements

NERA1 is implemented in C# using .Net Framework 4.0. For machines using Windows, the

users should install .Net Framework 4.0. For machines using Linux, the users should use

Mono 2.10 (http://www.mono-project.com/Main_Page). The machine should have at least

1GB of RAM.

3.3.4 Installation

NERA1 does not require any special installation other that ensuring .NET Framework is

installed.

3.3.5 Execution instructions

The command line for NERA1 is (the language of the text being processed is automatically

recognized):

NERA1.exe --input [DATA_FILE] [--source [LANG]]

[--param [ap]=[TRUE]/[FALSE]] [--param [di]=[TRUE]/[FALSE]]

[--param [k]=[TRUE]/[FALSE]]

where:

“DATA_FILE” – Each line in the DATA_FILE should contain the path of an input file and the

path of an output file, tab separated;

“LANG” – The language of the texts; Default: “ro”;

“-ap” – optional argument usable when the input files are already pre-processed and the

annotation is compliant with RACAI’s XML resource format; Default: FALSE;

“-di” – optional argument for calling the diacritics web service for Romanian; Default:

FALSE;

“-k” – optional argument for keeping TTL’s (original) annotation in the output file.

3.3.6 Input/Output data formats

The input files are either raw UTF-8 texts or pre-processed texts (RACAI’s XML resource

format) (see the “ap” option of the NERA1 executable in the previous section).

The output files are texts with NEs tagged, according to MUC-7 style (for a more detailed

format description, refer to section 3.1.6.2 of the TildeNER system).

3.3.7 Contact

For further information and technical support installing and/or running this tool, please email

to Dan Ştefănescu: danstef@racai.ro.

http://www.mono-project.com/Main_Page
mailto:danstef@racai.ro

 Contract no. 248347

D2.6 V3.0 Page 111 of 164

4 Tools for terminology extraction

This section covers the tools that perform terminology extraction and tools that are created to

integrate out of ACCURAT project developed tools within the toolkit’s general use case

workflows.

The tools included in this section of the ACCURAT toolkit are:

 Tilde’s wrapper system for CollTerm (developed by Tilde; see section 4.1);

 KEA wrapper (a wrapper system for the external tool KEA; developed by USFD;

see section 4.2);

 CollTerm, a tool for term extraction (developed by FFZG, see section 4.3);

 Terminology Extraction for English and Romanian (developed by RACAI, see

section 4.4).

4.1 Tilde’s wrapper system for CollTerm

4.1.1 Overview and purpose of the tool

The CollTerm system (developed by FFZG as part of the ACCURAT project) is a tool for

extracting collocations of length two to four words. It is based on POS/MSD phrase pattern

and stop-word filters and association measures that determine how strongly two or more

words co-occur. It can also extract unigrams based on a TF*IDF keyword weighing

algorithm. The input for the system is a set of documents which are tokenized (verticalized),

POS/MSD-tagged and lemmatized. The output are candidates of a specific number of words

ordered by their collocation strength.

The scoring of the n-grams (starting from bigrams) that pass the POS/MSD filters and stop-

word filters is performed by five different association measures. Association measures,

loosely speaking, measure how much words in a sequence of words co-occur more than by

chance.

The five association measures implemented in this tool are the following:

 Dice coefficient

DICE (w
1
...w

n
)

nf (w
1
...w

n
)

f (w
i
)

i1

n

where

f (.) is the frequency of a specific n-gram.

 Modified pointwise mutual information

I ' (w
1
...w

n
) log

2

f (w
1
...w

n
)P (w

1
...w

n
)

P (w
i
)

i1

n

where

f (.) is the frequency of a specific n-gram and

P (.) is the probability of a

n-gram calculated as a maximum likelihood estimate.

 Contract no. 248347

D2.6 V3.0 Page 112 of 164

 Chi-square statistic

2

(O
ij
 E

ij
)
2

E
iji, j

where

O
ij
 and

E
ij
 are observed and expected frequencies in a contingency table

of two dimensions for bigrams (contingency tables for n-grams have

dimensions).

 Log-likelihood ratio

G
2
 2 O

ij
log

O
ij

E
iji, j

where observed and expected frequencies are calculated as in the chi-square

statistic.

 T-score statistic

tscore
O
11
 E

11

E
11

where observed and expected frequencies are calculated as in the chi-square

statistic and the log-likelihood ratio.

These association measures have been selected from an exhaustive list of existing association

measures since previous research for bigrams
1213

, and n-grams
14

 has shown that these

measures show the most consistent results on different datasets and languages. Additionally,

only these association measures are implemented since other measures do not show

consistent and statistically significant improvements over each other.

For unigrams, the system uses a TF*IDF (term frequency in a document times inverse

document frequency on a reference corpus) based keyword ranking measure.

Tilde’s wrapper system for CollTerm provides functionality for term tagging in plaintext

documents, pre-processing of term-annotated documents and also evaluation of CollTerm

results for a given test corpus. As CollTerm requires pre-processed data (see section 3.1.6.4

for a format description), the wrapper provides all required pre-processing scripts.

The wrapper system has been created also in order to support varied length term extraction

using CollTerm. As CollTerm supports only fixed length (from one to four tokens) n-gram

extraction, the wrapper system executes CollTerm multiple times and combines the results in

one output data file for each input document.

12

 Stefan Evert: The statistics of word cooccurrences: Word pairs and collocations. PhD thesis, Universität

Stuttgart, Institut für Maschinelle Sprachverarbeitung, 2005.

13
 Pavel Pecina: Lexical association measures: Collocation Extraction. Studies in Computational and Theoretical

Linguistics. Institute of Formal and Applied Linguistics, Prague, Czech Republic, 2009.

14
 Saša Petrović et al: Extending lexical association measures for collocation extraction. Computer Speech and

Language 24 (2), 383–394, 2010.

 Contract no. 248347

D2.6 V3.0 Page 113 of 164

4.1.2 Changes from previous version

Tilde’s wrapper system for CollTerm has been updated to support the CollTerm version 0.7.

CollTerm now supports also unigram term tagging; therefore, the wrapper system is able to

tag unigram terms as well. Further improvements include adjusted tagging samples for

Latvian, Lithuanian as well as support for English term tagging. However, the user will have

to acquire TreeTagger in order to tag documents in English (see TildeNER section 3.1.5.5 on

how to adapt TreeTagger for the wrapper system). In order to help users get acquainted with

the system, “RUN” scripts have introduced. The “RUN” scripts allow the user to test various

scripts easily and during set-up of the tool can help figuring out whether some dependencies

are missing.

The new version, mainly because of introduction of unigram term tagging, performs better

than the previous system. The F-measure for Latvian term tagging has been increased from

46.15 to 55.01 for full terms (border detection included) and from 54.3 to 60.21 in the token

level. Precision has been increased from 50.21% to 52.74% for full terms. Recall has been

improved from 42.7% to 57.49%.

4.1.3 Software dependencies and system requirements

Tilde’s wrapper system’s for CollTerm software dependencies are as follows:

 TreeTagger (if the user wishes to tag a non-Baltic language document)
15

 Tagger.exe – the Tilde’s Baltic language POS-tagging web service interface on

Windows.

 tagger.sh – the Tilde’s Baltic language POS-tagging web service interface on

Linux.

 Perl (Windows - Strawberry Perl v5.12.1; Linux – Perl v5.10.1).

 Python (Windows – Python v2.7.1; Linux – Python v2.6.5)

Tilde’s wrapper system’s for CollTerm system requirements are as follows:

 For tagging:

o A Linux or Windows (XP or newer) operating system;

o 1 or more GB RAM (the accessible RAM depends on the input data file size

and may be larger if large (more than 100MB) documents will be processed!);

o Intel® Pentium® 4 CPU, 3.00 GHz, 2992 MHz, 1 Core, 2 Logical Processors

or faster.

The system requirements shown are based on a Windows based testing system used for

Latvian and Lithuanian CollTerm evaluation. Faster performance can be achieved using a

faster system and for larger annotated corpora more RAM can be necessary.

15

 TreeTagger is available only for research, evaluation and teaching purposes as defined in the license

http://www.ims.uni-stuttgart.de/~schmid/Tagger-Licence; for commercial application, the user will have to use

a different POS-tagger.

http://www.ims.uni-stuttgart.de/~schmid/Tagger-Licence

 Contract no. 248347

D2.6 V3.0 Page 114 of 164

The fast term annotation tool included in the toolkit (TESimpleAnnotator – runs only on

Windows) depends on:

 Microsoft .NET Framework 4.0 Redistributable

The system requirements for TESimpleAnnotator are as follows:

 Windows (XP SP2 or newer) operating system;

 2 or more GB RAM;

 Intel® Pentium® 4 CPU 3.00GHz, 2992 Mhz, 1 Core(s), 2 Logical Processors or

faster.

4.1.4 Installation

The Tilde’s wrapper system for CollTerm does not require installation. Simply copy the

whole “TildeCollTermWrapper” directory to a directory from where you would like to run

the term extraction and execute the Perl workflow scripts whenever it is necessary using a

Perl interpreter (for example, Strawberry Perl on Windows) from the command line

(Command Prompt or PowerShell on Windows or any programming language that supports

shell executions).

The user will have to create a property file in order to execute term tagging. Sample property

files are located within the “Sample_Data” subdirectory of the “TildeCollTermWrapper”

directory – “##_exec_plain.prop” for plaintext tagging and “##_exec_tabSep.prop” for

testing and tab-separated document tagging (“##” stands for the respective language code –

“lv” - Latvian, “lt” – Lithuanian and “en” - English). The user has to change all “phraseN”

and “stopN” property values according to the correct user system’s local paths to the

corresponding files located in the “Sample_Data” directory (the default values refer to

relative addresses and are valid only if the working directory is the Tilde’s Wrapper system’s

for CollTerm root directory).

Dependency installation on a Linux OS:

 For installation of Perl refer to http://www.perl.org/get.html.

Dependency installation on Windows OS:

 For installation of Perl refer to http://strawberryperl.com/.

For installation of .NET Framework 4.0 Redistributable refer to

http://www.microsoft.com/download/en/details.aspx?id=17718

4.1.5 Execution instructions

The Tilde’s wrapper system for CollTerm similarly to the TildeNER system contains external

and internal execution scripts (however, an advanced user may also execute the internal

execution scripts). The toolkit also provides a term annotation tool (TESimpleAnnotator) that

can be used to acquire test data.

The general use case scenario to test CollTerm performance is as follows:

1. Annotate test data with the TESimpleAnnotator tool;

2. Pre-process the annotated documents with the script

“PreprocessAnnotatedDataDirectory.pl” (running it on a directory);

http://www.perl.org/get.html
http://strawberryperl.com/
http://www.microsoft.com/download/en/details.aspx?id=17718

 Contract no. 248347

D2.6 V3.0 Page 115 of 164

3. Tag the pre-processed documents and evaluate the results with the script

“TermTagDirectory.pl” (running it on a directory). Note that the user will need to

provide a property file (see 4.1.6.9) that contains absolute paths to a phrase table

a stop-word list and an IDF (Inverse Document Frequency) list; therefore the

sample data property files (see 4.1.5.6) will have to be adjusted manually once

before the execution.

The general use case scenario to Term-tag a single document is as follows: tag the document

with the script “ExecuteCollTermOnFile.pl”.

4.1.5.1 TESimpleAnnotator

In order to evaluate CollTerm performance on the Baltic languages an annotation tool was

developed in order to allow fast annotation of plaintext documents (refer to section 4.1.6.1 for

a format description). The tool saves the annotated documents in an annotated data format

described in section 4.1.6.2.

For a user manual and term mark-up guidelines refer to the document “Term Markup

Guidelines.docx” that can be found in the “TESimpleAnnotator” subdirectory of the

“TildeCollTermWrapper” directory. The annotation tool (“TESimpleAnnotator.exe”) can be

found in the same directory.

4.1.5.2 External execution scripts

The external execution scripts provide the main functionality of Tilde’s Wrapper System for

CollTerm. The scripts are also part of the general use case scenarios. In order to provide

assistance in execution of the scripts the Tilde’s Wrapper System for CollTerm package

contains predefined Bash (“sh”; for Linux) and Batch (“bat”; for Windows) scripts in the form

“RUN-###.bat” or “RUN-###.sh” (where “###” is the name of the external execution script,

which command is executed by the script, for instance, “RUN-

PreprocessMuc7DataDirectory.bat”). The scripts make use of sample property files, phrase

tables, IDF lists and stop-word files in the “Sample_Data” directory and the input data (and

also output data after execution) in the “TEST” directory. The scripts operate on data in

Latvian (the user has to make modifications to the scripts and provide additional data for

other language support).

4.1.5.2.1 Test data pre-processing

Once the term-annotated test data is created (and the format is compliant to the annotated

data specified in 4.1.6.2), the user can use the script “PreprocessAnnotatedDataDirectory.pl”

to perform all required data pre-processing.

The script performs data pre-processing on a single directory (subdirectories are not

processed) that contains annotated documents. For each file it separates the term annotation

from the plaintext, tokenizes, POS-tags and lemmatizes the plaintext and combines the tab-

separated outcome of the plaintext with the separated term annotation in a tab-separated data

file (see 4.1.6.3 for the data format description).

 Contract no. 248347

D2.6 V3.0 Page 116 of 164

The command line to call the pre-processing for a single directory is as follows:

perl ./PreprocessAnnotatedDataDirectory.pl [1: Input directory] [2: Output

directory] [3: Input file extension] [4: Output file extension] [5:

Language] [6: POS-tagger]

The script requires in total six arguments passed to the script in a fixed order:

1. The source (input) data directory path.

2. The target (output) data directory path.

3. The input file extension (suggested is “txt” for annotated plaintext).

4. The output file extension (suggested is “gold” for human annotated data).

5. The language of the input documents. The language has to be supported by the

POS-tagger.

6. The POS-tagger to use for pre-processing.

Available POS-tagger and language pairs are defined in section 3.1.5.5 of the TildeNER POS-

tagging module. For information on how to add other POS-taggers refer to the section 3.1.7.

The script depends on “ProcessDirectory.pl” and “PrepareTEData.pl” scripts and in a

general use case has to be executed only once – to prepare annotated data.

For testing purposes and to provide execution examples

“RUN-PreprocessAnnotatedDataDirectory.bat” (Windows) and

“RUN-PreprocessAnnotatedDataDirectory.sh” (Linux) scripts are provided. The scripts are

preconfigured to execute “PreprocessAnnotatedDataDirectory.pl” on term-annotated

documents (with “txt” extensions) located in directory “./TEST/gold_plaintext_in” using the

POS-tagger “Tagger” for Latvian “lv”. Results will be saved in “./TEST/gold_tabsep_out”.

4.1.5.2.2 Unlabeled data pre-processing

The toolkit also provides unlabelled data directory pre-processing, which is done using the

script “TagUnlabeledDataDirectory.pl”. The script is identical to the TildeNER unlabelled

data pre-processing script defined in section 3.1.5.2.2. This script, however, is not essential as

the next two scripts do not explicitly require data in a pre-processed format (but the data may

be also provided in a pre-processed format nonetheless).

For testing purposes and to provide execution examples

“RUN-TagUnlabeledDataDirectory.bat” (Windows) and

“RUN-TagUnlabeledDataDirectory.sh” (Linux) scripts are provided. The scripts are

preconfigured to execute “TagUnlabeledDataDirectory.pl” on unlabelled plaintext

documents (with “txt” extensions) located in directory “./TEST/unlabeled_plaintext_in” using

the POS-tagger “Tagger” for Latvian “lv”. Results will be saved in

“./TEST/unlabeled_tabsep_out”.

4.1.5.2.3 Tagging of terms in a single document

In order to execute term extraction on a single plaintext or pre-processed document, the script

“ExecuteCollTermOnFile.pl” has to be used. The script allows multiple executions of

CollTerm for up to four times. The multiple executions are required as CollTerm extracts

 Contract no. 248347

D2.6 V3.0 Page 117 of 164

only fixed length n-grams, but terms may be of different lengths. The CollTerm execution of

particular length n-grams is controlled by the “execN” property in the property file. If the

property is set to “true”, the terms of the n-gram length “N” will be extracted. Every

execution will cause a term list file to be created. A threshold will be applied to the term list

file to filter unlikely n-grams. After all executions all term list files will be combined with a

tab-separated pre-processed document and if required also a term annotated result file will be

created.

The command line to call the term extraction for a single plaintext file is as follows:

perl ./ExecuteCollTermOnFile.pl [1: Input file] [2: Output file] [3:

Property file] [4: Keep temporary files] [5: N-gram prioritization]

The script requires in total four arguments passed to the script in a fixed order (the last one is

optional):

1. The path to the input file. If the property file defines that POS-tagging should be

used (“execPosTagger = true”), the input file has to be in the plaintext format

(see section 4.1.6.1); otherwise the input file has to be in one of the pre-processed

data formats (4.1.6.3, 4.1.6.4 or 4.1.6.5).

2. The path to the output file where results will be written. If the property file

defines that POS-tagging should be used (“execPosTagger = true”), the result file

will be created in the annotated plaintext data format (see section 4.1.6.2);

otherwise the result file will be created in the tab-separated term-tagged format

(see section 4.1.6.5).

3. The wrapper system’s property file that defines all required data pre-processing

and term extraction properties (see section 4.1.6.9). Note that the sample property

files defined in the section 4.1.5.6 will have to be updated to reflect the user

system’s local paths.

4. The indicator, whether to keep temporary files. If “1” temporary files will be

kept.

5. Algorithm to use for different n-gram term candidate prioritization during

tagging. Available values are “OLD” for N-gram prioritization (achieves better

results) and “MIXED” for mixed prioritization (using linear interpolation of

CollTerm confidence scores).

The script depends on the “TEUtilities.pm”, “Tag.pm” and “TEPostprocess.pm” Perl

modules and the CollTerm system. The script will have to be run once for each document.

For testing purposes and to provide execution examples:

 For plaintext to term-annotated plaintext tagging the

“RUN-ExecuteCollTermOnFile-plaintext.bat” (Windows) and

“RUN-ExecuteCollTermOnFile-plaintext.sh” (Linux) scripts are provided. The

scripts are preconfigured to execute “ExecuteCollTermOnFile.pl” so that input

data is taken from the file “./TEST/plaintext_in.txt”, the

“./Sample_Data/lv_exec_plain.prop” property file is used in tagging; the POS-

 Contract no. 248347

D2.6 V3.0 Page 118 of 164

tagger “Tagger” for Latvian (“lv”) is used. The results will be saved in

“./TEST/muc-7_plaintext_out.txt”.

 For tab-separated (POS-tagged and lemmatized) to term-annotated plaintext

tagging the “RUN-ExecuteCollTermOnFile-tabsep.bat” (Windows) and

“RUN-ExecuteCollTermOnFile-tabsep.sh” (Linux) scripts are provided. The

scripts are preconfigured to execute “ExecuteCollTermOnFile.pl” so that input

data is taken from the file “./TEST/tabsep_in.pos” and the

“./Sample_Data/lv_exec_tabsep.prop” property file is used in tagging. The results

will be saved in “./TEST/annotated_tabsep_out.pos”.

4.1.5.2.4 Tagging of terms in all files of a directory

The script “TermTagDirectory.pl” allows execution of CollTerm on all files in a single

directory. The script also allows optionally evaluating the results if pre-processed test data is

passed to the script. As the script calls the “ExecuteCollTermOnFile.pl” script, for

input/output data formats refer to the section 4.1.5.2.3.

The command line to call the term-tagging for a single directory is as follows:

perl ./TermTagDirectory.pl [1: Input directory] [2: Output directory] [3:

Input file extension] [4: Output file extension] [5: Property file] [6:

Evaluation result file] [7: N-gram prioritization]

The script requires in total six arguments passed to the script in a fixed order (the last two are

optional):

1. The directory from which to read the input files.

2. The directory to which the term-tagged files will be written.

3. The extension (suffix before the dot) of the input files.

4. The extension (suffix before the dot) of the output files.

5. The path to the property file (see section 4.1.6.9). Note that the sample property

files defined in the section 4.1.5.6 will have to be updated to reflect the user

system’s local paths.

6. The evaluation file path (optional and only if test data is passed as the input data!

May be empty if the last parameter is required). This file (if defined) will be

created by the Perl script.

6. Algorithm to use for different n-gram term candidate prioritization during

tagging. Available values are “OLD” for N-gram prioritization (achieves better

results) and “MIXED” for mixed prioritization (using linear interpolation of

CollTerm confidence scores).

The script depends on the “ExecuteCollTermOnFile.pl” script. This is the most important

script after the annotated data pre-processing script as both of these scripts in a combination

allow evaluation of the CollTerm tool’s performance if annotated test data is provided.

For testing purposes and to provide execution examples:

 For plaintext to term-annotated plaintext tagging the

“RUN-TermTagDirectory-plaintext.bat” (Windows) and

 Contract no. 248347

D2.6 V3.0 Page 119 of 164

“RUN-TermTagDirectory-plaintext.sh” (Linux) scripts are provided. The scripts

are preconfigured to execute “TermTagDirectory.pl” so that input data is taken

from the directory “./TEST/unlabeled_plaintext_in” (“txt” files), the

“./Sample_Data/lv_exec_plain.prop” property file is used in tagging; the POS-

tagger “Tagger” for Latvian (“lv”) is used. The results will be saved in the

directory “./TEST/annotated_plaintext_out”.

 For tab-separated (POS-tagged and lemmatized) to term-annotated plaintext

tagging the “RUN-TermTagDirectory-tabsep.bat” (Windows) and

“RUN-TermTagDirectory-tabsep.sh” (Linux) scripts are provided. The scripts are

preconfigured to execute “TermTagDirectory.pl” so that input data is taken from

the directory “./TEST/unlabeled_tabsep_in” (“pos” files) and the

“./Sample_Data/lv_exec_tabsep.prop” property file is used in tagging. The results

will be saved in the directory “./TEST/annotated_tabsep_out”.

 For gold-annotated tab-separated (POS-tagged and lemmatized) to term-

annotated plaintext tagging with evaluation the

“RUN-TermTagDirectory-tabsep+gold.bat” (Windows) and

“RUN-TermTagDirectory-tabsep+gold.sh” (Linux) scripts are provided. The

scripts are preconfigured to execute “TermTagDirectory.pl” so that input data is

taken from the directory “./TEST/gold_tabsep_in” (“gold” files) and the

./Sample_Data/lv_exec_tabsep.prop” property file is used in tagging. The results

will be saved in the directory “./TEST/gold_annotated_tabsep_out” and the

evaluation results will be saved in the file “./TEST/eval.txt”.

4.1.5.2.5 Plaintext to term-annotated document list tagging

The ACCURAT workflow for NE/Term mapping allows term tagging of lists of files.

Therefore, the script “ExecuteCollTermOnFileList.pl” was created. The script tags each

plaintext document (for the format refer to section 4.1.6.1) specified in an I/O document pair

list (for the format refer to section 3.1.6.7 of the TildeNER system) and saves each plaintext

document with terms marked with “<TENAME>” tags (for the format refer to section

4.1.6.2) in files also specified by the document pair list.

The command line to call the term extraction for a document pair list is as follows:

perl ./ExecuteCollTermOnFileList.pl [1: Input file list] [2: Property file]

The script requires in total two arguments passed to the script in a fixed order:

 The path of the I/O document pair list file (for the format refer to section 3.1.6.7

of the TildeNER system). Each line of the document contains two tab-separated

(“\t” character) entries – the plaintext input file (see section 5.5.1) and the term-

annotated output file (see section 5.5.2).

 The wrapper system’s property file that defines all required data pre-processing

and term extraction properties (see section 4.1.6.9). Note that the sample property

files defined in the section 4.1.5.6 will have to be updated to reflect the user

system’s local paths.

 Contract no. 248347

D2.6 V3.0 Page 120 of 164

The script depends on the “ExecuteCollTermOnFile.pl” script.

For testing purposes and to provide execution examples:

 For plaintext to term-annotated plaintext tagging the

“RUN-ExecuteCollTermOnFileList-plaintext.bat” (Windows) and

“RUN-ExecuteCollTermOnFileList-plaintext.sh” (Linux) scripts are provided.

The scripts are preconfigured to execute “ExecuteCollTermOnFileList.pl” so that

input I/O file list is taken from the file “./TEST/plaintext_fileList.txt” and the

“./Sample_Data/lv_exec_plain.prop” property file is used in tagging (the POS-

tagger “Tagger” for Latvian (“lv”) is used).

 For tab-separated (POS-tagged and lemmatized) to term-annotated plaintext

tagging the “RUN-ExecuteCollTermOnFileList-tabsep.bat” (Windows) and

“RUN-ExecuteCollTermOnFileList-tabsep.sh” (Linux) scripts are provided. The

scripts are preconfigured to execute “ExecuteCollTermOnFileList.pl” so that

input I/O file list is taken from the file “./TEST/tabsep_fileList.txt” and the

“./Sample_Data/lv_exec_tabsep.prop” property file is used in tagging.

4.1.5.3 Internal execution scripts

4.1.5.3.1 Pre-processing a single term annotated document

In order to pre-process term annotated data for testing the script “PrepareTEData.pl” is

provided. For a single term annotated document (the format is specified in 4.1.6.2) the script

separates the term annotation from the plaintext, tokenizes, POS-tags and lemmatizes the

plaintext and combines the tab-separated outcome of the plaintext with the separated term

annotation in a tab-separated data file (see 4.1.6.3 for the data format description).

The command line to call the pre-processing for a single file is as follows:

perl PrepareTEData.pl [1: Language] [2: POS-tagger] [3: Input file] [4:

Output file] [5: Delete temp files]

The script requires in total five arguments passed to the script in a fixed order (the last one is

optional):

1. The language of the input document. The language has to be supported by the

POS-tagger.

2. The POS-tagger to use for pre-processing.

3. The input file path.

4. The output file path.

5. Indicator, whether to delete temporary files. “-D” means that temporary files will

be deleted.

The script depends on “Tag.pm” and “TEPreprocess.pm” modules.

4.1.5.3.2 Evaluating terminology extraction

The script “TEEvaluation.pl” allows the user to evaluate term-tagged tab-separated

documents with gold standard term-tagged tab-separated documents. The script evaluates the

 Contract no. 248347

D2.6 V3.0 Page 121 of 164

precision, recall, accuracy and F-measure (

) of the two token categories (“B-

TERM” and “I-TERM”), the full terms and the total (average system performance) for single

tokens (TERM_TOKENS) by providing two directories – a gold data directory (for data

formats refer to section 4.1.6.3) and a test result data directory (for data formats refer to

section 4.1.6.5). The script requires for the directories to have equal file names

(extensions/suffixes before the dot in file names may differ). A file is produced, which

contains evaluation results. A sample file contents is as follows:

FULL_TERMS 98.43 98.04 - 98.23

TERM_TOKENS 99.41 97.67 99.75 98.53

I-TERM 100.00 94.38 99.84 97.11

B-TERM 99.21 98.82 99.84 99.01

The columns in the tab separated result file represent the following in the exact sequence:

result category, recall, precision, accuracy and F-measure. For full terms accuracy results will

not be given (accuracy can be estimated on single token performance only and not on

multiple token sequences as the interpretation of non-term entities and their possible

sequences is ambiguous).

The command line to call the evaluation script is as follows:

perl ./TEEvaluation.pl [1: Gold data directory] [2: Test result directory]

[3: Output file]

The script requires in total three arguments passed to the script in a fixed order:

1. The path of the directory containing the human annotated/gold documents.

2. The path of the directory containing the test result documents.

3. The path to the evaluation result output file.

The script does not depend on any other system module or script.

4.1.5.3.3 Executing a process on a directory

Similarly to TildeNER, the term tagging and data pre-processing workflows require all files in

a directory to be processed. Therefore, the same “ProcessDirectory.pl” script as in TildeNER

is used. For more information refer to the section 3.1.5.3.1.

4.1.5.4 Internal modules

Internal modules are not supposed to be called externally (manually) by the user, however the

scripts contain many useful functions, which could be useful to the user if he/she would want

to extend the system.

4.1.5.4.1 Data pre-processing module

The Perl module “TEPreprocess.pm” provides a set of functions used in document pre-

processing before term extraction. A list of functions used in the workflows is as follows:

1. RemoveEmptyLines - Removes empty lines from a tab-separated document.

According to a selected option all empty lines are kept ("1"), all empty lines,

where 2 or more empty lines are one after another are kept ("2"), all lines are

 Contract no. 248347

D2.6 V3.0 Page 122 of 164

removed (all other values). The term pre-processing workflows allow all empty

lines to be kept.

2. Detagger – Splits term tags and plaintext from a term annotated document. Term

tags and the plaintext are saved in separate documents. After calling this method,

the plaintext can be POS-tagged.

3. AddNewTags – After POS-tagging of a plaintext document, this method

combines the tab-separated tokenized, POS-tagged and lemmatized document

with the term tags, which were split from the plaintext using the Detagger

method.

4. FindTokenPos – If the POS-tagger used in POS-tagging of a plaintext document

does not produce positional token information that would allow term markup to

be applied to the plaintext (for instance, TreeTagger does not produce any – line

from, column from, line to, column to), the method analyses the POS-tagged

document and the plaintext and assigns positional information for each token.

The module does not depend on any other system module.

4.1.5.4.2 Data post-processing module

The Perl module “TEPostprocess.pm” provides a set of functions used in term-tagged

document post-processing. A list of functions used in the workflows is as follows:

1. TagTermsFromMultipleFiles – the method (N-gram prioritization algorithm)

creates a term-tagged tab-separated data file from a tab-separated data file (all of

the formats described in sections 4.1.6.3, 4.1.6.4 and 4.1.6.5 are supported) and

an array of term lists (as extracted by CollTerm). The array has to be sorted by the

n-gram length of the terms in the term list files in a descending order. The method

tags all terms from the term list files in the tab-separated document and saves the

new tab-separated document as a result.

2. TagTermsFromMultipleFilesV2 – the method (Mixed prioritization algorithm)

creates a term-tagged tab-separated data file from a tab-separated data file (all of

the formats described in sections 4.1.6.3, 4.1.6.4 and 4.1.6.5 are supported), an

array of term lists (as extracted by CollTerm) and an array of weights (the same

size as the term lists’ array). All term candidates regardless of length will be

ranked applying weights on different n-gram lists. During tagging the higher

ranked term candidates will be preferred.

3. TaggedTokensToTaggedPlaintext – the method applies term markup from a tab-

separated data file (see section 4.1.6.5) to a plaintext data file (see section 4.1.6.1)

and saves the result as a term annotated data file (see section 4.1.6.2).

The module does not depend on any other system module or script.

4.1.5.4.3 Tokenization, lemmatization and POS-tagging module

Identically to the TildeNER system the Tilde’s wrapper system for CollTerm uses the Perl

module “Tag.pm”, which provides POS-tagging functionality for data pre-processing. For a

description of the module refer to the section 3.1.5.4.5 of the TildeNER system’s description.

 Contract no. 248347

D2.6 V3.0 Page 123 of 164

4.1.5.4.4 Utility functions for term extraction

The Perl module “TEUtilities.pm” provides a set of useful utility functions. The list of

functions is as follows:

1. ReadPropertyFile – the method reads a property file (refer to section 4.1.6.9) and

returns the property keys and values in a hash table.

2. ApplyTermThreshold – as CollTerm execution will cause all valid n-grams to be

extracted, the method allows applying a threshold to a term list file. A new file is

created as a result.

The module does not depend on any other system module.

4.1.5.4.5 CollTerm module

The most important module is the CollTerm module as the wrapper system only provides

functionality to easily execute the CollTerm system and evaluate the results if necessary. As

the workflows already contain CollTerm execution sequences, the user does not require

additional knowledge about this module.

4.1.5.5 POS-taggers included in the toolkit

For a description of POS-taggers supported by the wrapper system, refer to the TildeNER

POS-tagger section 3.1.5.5.

4.1.5.6 Data samples included in the toolkit

Within the ACCURAT Toolkit we provide also sample data for the execution of CollTerm

and the Tilde’s wrapper system for CollTerm. The sample data is included in the

“Sample_Data” subdirectory of the “TildeCollTermWrapper” directory. The provided data is

as follows:

1. Stop-word list files for Latvian, Lithuanian and English

(“STOP_LV.txt”,“STOP_LT.txt” and “STOP_EN.txt”);

2. Phrase tables for Latvian, Lithuanian and English

(“LV_TERM_POS.txt”,“LT_TERM_POS.txt” and “EN_TERM_POS.txt”);

3. Sample property files for the execution of Tilde’s wrapper system for CollTerm

on plaintext documents (valid also for the NE/Term Mapping Workflow of the

ACCURAT Toolkit) for Latvian, Lithuanian and English (“lv_exec_plain.prop”,

“lt_exec_plain.prop” and “en_exec_plain.prop”);

4. Sample property files for the execution of Tilde’s wrapper system for CollTerm

on tab-separated pre-processed documents (see section 3.1.6.4 for a format

description) (not valid for the NE/Term Mapping Workflow) for

Latvian,Lithuanian and English (“lv_exec_tabsep.prop”, “lt_exec_tabsep.prop”

and “en_exec_tabsep.prop”);

5. IDF list files for Latvian, Lithuanian and English (“LV_IDF.txt”, “LT_IDF.txt”

and “EN_IDF.txt”).

 Contract no. 248347

D2.6 V3.0 Page 124 of 164

4.1.6 Input/output data formats

All documents used in the Tilde’s wrapper system and the CollTerm system should be

encoded using UTF-8 encoding. Other encodings are not supported. The systems are BOM

insensitive; however, it is advised for the user to strip the BOM characters before processing

data as some POS-taggers may operate incorrectly. It is also advised because of the same

reason to remove all control characters except LF (“\n”), CR (“\r”) and “TAB” (“\t”) from the

input data.

All input and output data files have to contain file extensions (for instance, “*.txt” for

plaintext documents, “*.pos” for POS-tagged documents, etc.); otherwise, the system may

perform unexpectedly.

4.1.6.1 Plaintext format

The first and the most simple data format for named entity tagging is plaintext. A plaintext

document is not allowed to contain mark-up within the text. All mark-up will be considered

as part of the plaintext and processed together with the text.

4.1.6.2 Term annotated data format

The manual annotation tool TESimpleAnnotator and the tagging workflow script

“ExecuteCollTermOnFile.pl” generates documents in a format where each term is tagged

using “<TENAME>” tags. All other tags are considered as a part of the plaintext document.

A sample annotated document (shown is only one sentence) is as follows:

Loga augšējā labajā stūrī obligāti noklikšķiniet uz <TENAME>Vadības

paneļa</TENAME> sākumlogs , lai <TENAME>Klasiskais skats</TENAME> nebūtu

aktīvs.

4.1.6.3 Tab-separated testing data format

The annotated data pre-processing workflow (PreprocessAnnotatedDataDirectory.pl)

produces data in a tab-separated, POS-tagged, tokenized, lemmatized and term-tagged

format.

The tab-separated format contains (in a fixed and non-changeable sequence):

1. The original word form

2. Part of speech

3. Lemma

4. Morpho-syntactic tag (may be also non-positional, but as a sample the Tilde’s

positional 28 category morpho-syntactic tag is given)

5. Line in which the token starts in the original plaintext document

6. Column in which the token starts in the original plaintext document

7. Line in which the token ends in the original plaintext document

8. Column in which the token ends in the original plaintext document

9. Term category

 Contract no. 248347

D2.6 V3.0 Page 125 of 164

A sample pre-processed test data sentence is as follows:

Kompaktdiska N kompaktdisks N-msg---------n-----------f- 0 0 0 11 B-TERM

vai C vai C---------------------c---l- 0 13 0 15 O

DVD - DVD ---------------------------- 0 17 0 19 B-TERM

diska N disks N-msg---------n-----------l- 0 21 0 25 I-TERM

ierakstīšana N ierakstīšana N-fsn---------n-----------l- 0 27 0 38 O

programmā N programma N-fsl---------n-----------l- 0 40 0 48 B-TERM

Windows N Windows N-fsn---------n-----------f- 0 50 0 56 O

Media - Media ---------------------------- 0 58 0 62 O

Player - Player ---------------------------- 0 64 0 69 O

A wider description of the format’s first seven columns is given in section 3.1.6.3.

The format specifies that each token has to have a term category (column eight). Non-terms

receive the category “O”. The first token in a term receives a category that starts with “B-”;

all other tokens within a term receive a category that starts with an “I-”. It is not allowed for a

term to start with an “I-” token. All possible (currently supported) categories are:

1. “B-TERM” – the first token of a term;

2. “I-TERM” – the other (not first) tokens of a term;

3. “O” – not a term.

The document format also requires 2 empty lines to be present for newline characters in the

plaintext. Sentences may be separated using one empty line, but that is not mandatory if the

TreeTagger “SENT” category is used to mark sentence ending characters.

4.1.6.4 Tab-separated pre-processed unannotated data format

The data format is identical to the pre-processed unannotated data format used in named

entity recognition (described in section 3.1.6.4).

4.1.6.5 Tab-separated term-tagged data format

The tagging workflow script “ExecuteCollTermOnFile.pl” generates also tagged documents

in a tab-separated format (before applying markup to plaintext). The format is similar to the

pre-processed data format described in section 3.1.6.3. The difference is that this format has

an additional column – the ranking of the extracted terms (assigned by CollTerm). A sample

sentence of the format is as follows:

Diska N disks N-msg---------n-----------f- 0 0 0 11 B-TERM 0.9

vai C vai C---------------------c---l- 0 13 0 15 O 0

DVD - DVD ---------------------------- 0 17 0 19 B-TERM 0.7

diska N disks N-msg---------n-----------l- 0 21 0 25 I-TERM 0.7

rakstīšana N rakstīšana N-fsn---------n-----------l- 0 27 0 38 O 0

programmā N programma N-fsl---------n-----------l- 0 40 0 48 B-TERM 0.8

Windows N Windows N-fsn---------n-----------f- 0 50 0 56 O 0

Media - Media ---------------------------- 0 58 0 62 O 0

Player - Player ---------------------------- 0 64 0 69 O 0

 Contract no. 248347

D2.6 V3.0 Page 126 of 164

All tokens of a single term will contain the same rank as the rank is assigned to full terms and

not individual tokens.

4.1.6.6 Stop-word list format

The stop-word list file required by CollTerm has to contain one stop-word per line. A sample

of the stop-word list is as follows:

in

on

at

before

4.1.6.7 Phrase table format

As various POS taggers have different tagsets the CollTerm tool supports an external phrase

table of allowed POS tag sequences, which is required for valid term extraction. The

configuration file hast to be a tab separated file, which contains in each line a single POS tag

sequence. Each POS tag may be also represented with a regular expression, in order to

support also positional tagsets and allow flexible phrase definition.

A sample of the phrase configuration file is as follows:

N N N

N

^n…g.* ^n.*

The last example shows usage of regular expressions. The first two examples require for the

whole POS tag to match the given value.

4.1.6.8 IDF list file format

The IDF list file is a tab-separated text file that contains one entry per line. Each line contains

one token and its IDF score. It is advised to calculate the score on a relatively large general

domain corpus (one million running words should be sufficient). All entries are sorted in an

ascending order.

A sample extract from the Latvian IDF sample file is given below:

. 0.0025

, 0.0124

būt 0.0735

un 0.1149

no 0.2999

4.1.6.9 CollTerm execution property file

In order to execute CollTerm in the “ExecuteCollTermOnFile.pl” and

“TermTagDirectory.pl” scripts, a property file is required, which specifies how many times

and with which parameters CollTerm should be executed. The properties also specify,

whether the input data has to be pre-processed before CollTerm execution.

 Contract no. 248347

D2.6 V3.0 Page 127 of 164

A property file contains one parameter per line (comments are allowed only at the beginning

of each line starting with the symbol “#”; also empty lines are allowed). Each property starts

with an identifier, which is followed by an equation symbol “=”. The value of the property is

everything (trimming both end whitespaces) that is after the equation symbol.

All supported properties are:

1. execPosTagger – specifies, whether POS-tagging has to be called for the input

data. If “true”, results will be saved in the annotated plaintext format. If “false”,

results will be saved in the tab-separated format.

2. POSTagger – specifies which tagger to use in POS-tagging. Supported are all

“Tag.pm” supported values.

3. Language – specifies which language to use in POS-tagging. Supported are all

“Tag.pm” supported values.

4. execN – if “true”, n-grams of length “N” will be extracted (supported are n-grams

up to the length of four tokens).

5. idfFileN - the path to an IDF list file that has been compiled using a general

domain corpus. The tool is bundled with three language IDF files precompiled

(Latvian, Lithuanian and English). For a format description see section 4.1.6.8.

6. methodN – the CollTerm method to use for n-gram of length “N” extraction. The

available values are:

a. “dice” for the Dice coefficient

b. “mi” for the modified mutual information

c. “chisq” for the chi-square statistic

d. “ll” for the log-likelihood ratio and

e. “tscore” for the t-score statistic

7. lambdaN – the weight of n-gram term candidates of length “N” if the mixed

prioritization term-tagging algorithm is used.

8. lenN – the length of the extracted n-grams (the length has to be equal to “N”).

9. minFreqN – the minimum frequency of an n-gram to be considered as a possible

term.

10. thresholdN – the decimal threshold of extracted n-grams of length “N”. As

CollTerm will extract all n-grams, only the ones ranked higher than the threshold

will be used in tagging.

11. phraseN – the phrase table to use for n-gram of length “N” extraction. The paths

to an existing local phrase table file. See section 4.1.5.6 for sample data. Note that

the sample property files have to be adjusted to reflect the user’s local system’s

paths!

12. stopN – the stop-word list to use for n-gram of length “N” extraction. The paths to

an existing local stop-word list file. See section 4.1.5.6 for sample data. Note that

the sample property files have to be adjusted to reflect the user’s local system’s

paths!

 Contract no. 248347

D2.6 V3.0 Page 128 of 164

13. posN – the positions of word forms, POS-tags and lemmas in the tab-separated

pre-processed documents passed to CollTerm for n-gram of length “N” extraction.

See section 4.1.5.6 for sample property files.

4.1.7 Integration with external tools

To integrate the Tilde’s wrapper system for CollTerm into another system that requires term

extraction, the target system has to be able to execute command line commands. All standard

execution commands are described in section 4.1.5.

For information on how to add another POS-tagger refer to the section 3.1.7 of the TildeNER

system (both systems share the same POS-tagger integration solution).

4.1.8 Contact

For further information and technical support installing and/or running this tool, please email

to Mārcis Pinnis (marcis.pinnis@tilde.lv; for questions regarding the Perl wrapper system)

and Marko Tadic (marko.tadic@ffzg.hr; for questions regarding the CollTerm system).

4.1.9 Useful references

The POS-tagged data standard is an extended version of the TreeTagger format:

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.

Methods applied in the Tilde’s wrapper system for CollTerm have been published in:

Mārcis Pinnis, Nikola Ljubešić, Dan Ştefănescu, Inguna Skadiņa, Marko Tadić, Tatiana

Gornostay. 2012. Term extraction, tagging, and mapping tools for under-resourced

languages. Proceedings of the 10
th

 Conference on Terminology and Knowledge

Engineering (TKE 2012), June 20-21, Madrid, Spain.

4.2 KEA wrapper

4.2.1 Overview and purpose of the tool

In the multi-lingual NE and term mapper (see section 5.1) we make use of KEA to tag terms

for the English documents. The system is an existing tool and is not implemented within the

ACCURAT project. The output of this system is, therefore, different from the input format of

the NE and term mapper. The wrapper:

 enable that the output of KEA is of the same format as the input files to the

mapper

 provides a scenario to users where the mapper can be run on existing annotated

data

 enables the users to use other TE systems to prepare the input to the mapper.

4.2.2 Changes from the previous version

There are no changes from the previous version.

mailto:marcis.pinnis@tilde.lv
mailto:marko.tadic@ffzg.hr
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

 Contract no. 248347

D2.6 V3.0 Page 129 of 164

4.2.3 Software dependencies and system requirements

The wrapper is implemented in the programming language Java. It requires the following

settings to run:

 JRE (Java Runtime Environment) 1.6

 1+ GB RAM

4.2.4 Installation

The wrapper does not require any installation.

4.2.5 Execution instructions

The KEA wrapper can be run using the following command:

java -jar KEATEWrapper.jar [fileList]

fileList: a tab separated list of files. On each line the file contains the file name (with the full

path) to be annotated by the wrapper, a tab for separation and the file name (with the full

path) where the results of the annotation should be saved. The output file will be

automatically generated by the wrapper. For a sample of the format of the file list refer to

section 3.1.6.7 of the TildeNER system.

Please also make sure that you run the wrapper from the folder where all the required

resources are saved. These resources are the entire folders (“docs”, “data”,

“workingFolderForTE” and “testdocs”) and are provided with the wrapper.

4.2.6 Input/Output data formats

Input to the wrappers is text that is encoded in UTF-8.

Output of the KEA wrapper is text with terms tagged. Terms are tagged with

<TENAME>term</TENAME> (for a more detailed format description refer to section 4.1.6.2

of the Tilde’s wrapper system for CollTerm). For more details see the description for the NE

and term mapper.

4.2.7 Contact

For further information and technical support installing and/or running this tool, please email

to Ahmet Aker: a.aker@dcs.shef.ac.uk.

4.3 CollTerm – a tool for collocation extraction

4.3.1 Overview and purpose of the tool

CollTerm is a tool for collocation and term extraction, i.e. extracting word sequences that co-

occur more than by chance or that occur significantly more frequently in a domain corpus

than in a reference corpus. This tool extracts collocation and term candidates by applying

POS/MSD phrase filters, stop-word filters and computing different statistical association

measures between sequences of words. If an IDF list file is present, the tool takes into

account the significance of the term frequency regarding a reference corpus. The output of

the tool is a list of collocation and term candidates ranked by their strength.

mailto:a.aker@dcs.shef.ac.uk

 Contract no. 248347

D2.6 V3.0 Page 130 of 164

4.3.2 Changes from previous version

There are several differences between versions 0.3 and 0.7. One of them is the name of the

tool. Since in the newest version of the tool extracts not only collocations of length 2-4, but

terms of length 1-4 by taking into account a reference corpus, the name of the tool was

changed to CollTerm.

Specific changes from version 0.3 are these:

 term extraction

o The IDF value for each lemma is computed from a reference corpus with an

additional script (“calculate_idf.py”)

o The TF*IDF ranking method is added. Thereby the possibility of extracting

terms of length 1 is given.

o If the “idf” argument (and thereby the IDF file) is given and any other but

the TF*IDF ranking method is used, a linear combination of the ranking

method (a collocation extraction method) and the average IDF of the n-

gram is computed. In that way the possibility of combining clues about co-

occurrence on one side and specificity regarding a reference corpus on the

other side is given.

 output control

o Collocation and term candidates can be given as lemma sequences, most

frequent token sequences and all token sequences.

o The ranking method result can be normalized to a specified range.

o The list of collocation and term candidates can be controlled also by a

threshold (minimum value) of the ranking method.

o Collocation and term candidates can be given without the ranking method

results (appropriate for further processing)

4.3.3 Software dependencies and system requirements

The tool is platform independent. It can be run on python2.6 or python2.7 on any platform

that provides the environment for this programming language. There are no specific hardware

requirements.

4.3.4 Installation

The system requires a working Python interpreter. No installation of the tool is required.

4.3.5 Execution instructions

The tool has to be executed in command line by calling the script with the corresponding

arguments. The possible arguments are the following:

-i tab separated input file from which to extract terms (mandatory). The argument

requires one value – the path to the file.

-s stop-word file (optional). If none specified, the system assumes that no stop-word

list for the file is given. The argument requires one value – the path to the file.

 Contract no. 248347

D2.6 V3.0 Page 131 of 164

-p phrase configuration file (mandatory). The argument requires one value – the path

to the file.

-n the maximum number of top ranked terms to be extracted from the input file

(optional). The argument requires one value – an unsigned integer. If the

argument is not given, all valid n-grams will be extracted.

-t the threshold (minimum score) for term weight (optional). The argument requires

one value – a floating point or integer value. If the argument is not given, all valid

n-grams will be extracted.

-m the n-gram ranking method which is applied to rank n-grams from the input file

(mandatory). The argument requires one value – a string enumerator of the

ranking method. Possible string enumerators are:

 “dice” for the Dice coefficient

 “mi” for the modified mutual information

 “chisq” for the chi-square statistic

 “ll” for the log-likelihood ratio and

 “tscore” for the t-score statistic

 “tfidf” for the TF*IDF score (accompanied with a mandatory IDF file)

-l the length of the n-grams to be extracted (mandatory). The argument requires one

value – a natural number (1–4) that specifies the n-gram length. For the n-gram

length of 1 only the “tfidf” ranking method is applicable.

-o the extracted term list output file (optional). The argument requires one value –

the path of the output file. If the argument is not specified, the results are printed

to the standard output stream (console).

-pos the positions (column indices) of the tokens (actual word), POS/MSD tags and

lemmas in the input file (optional). The argument requires three values –

unsigned integers in the format “[token position] [POS/MSD tag position]

[lemma position]”, for instance, “-pos 0 2 1” defines that the token is defined in

the first column, the POS/MSD tag is defined in the third column and lemma is

defined in the second column. If the argument is not given, a default position

(token – 0, POS/MSD tag – 1 and lemma – 2) is assumed.

-min the minimum frequency of a n-gram to be considered as a candidate (optional).

The argument requires one value – an unsigned integer. If the argument is not

given, the minimum frequency of 5 is assumed.

-prop the property file (optional). The argument requires one value – the path to the file.

All properties (except “-prop”) can be also passed to the tool using a property file

(in this way the user can avoid writing huge commands).

-idf a file with IDF weights (optional, but mandatory for the TF*IDF ranking

method). If the IDF weights are given and any other ranking method than

TF*IDF is used, a linear combination of the average IDF score and the ranking

method is computed.

 Contract no. 248347

D2.6 V3.0 Page 132 of 164

-seq type of n-gram output (optional). If the argument is not specified, “0” is assumed.

“0” where each n-gram is represented as a sequence of lemmas

“1” where each n-gram is represented as the most frequent token sequence

“2” where each n-gram is represented with all recorded token sequences with

their frequencies

-norm normalizes the output to the [0,x] range (optional). If argument “0” is given, or

the argument is not specified, normalization is not performed.

-terms type of term output (optional). If the argument is not specified, “0” is assumed.

“0” – output terms and their corresponding weights (as well as frequency if “-seq

2” is defined)

“1” – output terms only (regardless of the “seq” argument value)

An example of calling the script is this:

python CollTerm.py –i input_text.txt –s stopwords.txt –p phrases.txt –pos 0

5 3 –prop properties.txt –t 0.5 –min 3 –l 2 –m dice – seq 1 –terms 1

4.3.6 Input/Output data formats

The input text file has to be a UTF-8 encoded tab-separated file with columns with token,

POS/MSD and lemma information. The location (index of the column) in which this data is

located can be given by the “-pos” argument. An example of the input file (which requires the

“-pos 0 2 1” argument since token is on the first, POS/MSD on the third and lemma on the

second position) is this:

Najpoznatija poznat Npmsn 0 1

ravnateljica ravnateljica Ncfsn 1 1

nekog nekoji Pi-msg--n-a-- 0 0

The stop-word file has to be a UTF-8 encoded file with one stop-word per row. An example

of the stop-word file is this:

i

je

od

za

The phrase configuration file enables two sorts of filters: POS/MSD filters and stop-word

filters.

The POS/MSD filters are tab-separated Python regular expressions. More filters can be

defined for n-grams of specific length and every n-gram has to satisfy at least one filter.

Some examples for POS/MSD filters are these:

N..n.* N..g.*

A..n.* Nc.n.*

A.* A.* N.*

The stop-word filters are tab-separated special symbols: “STOP” for a stop word, “!STOP”

for a non-stop word and “*” for any stop word. Only one stop-word-filter can be defined for

 Contract no. 248347

D2.6 V3.0 Page 133 of 164

n-grams of a specific length and all n-grams of that length have to satisfy this filter. Some

examples for stop-word filters are these:

STOP !STOP

* STOP *

Some or all of the input parameters for the tool can be defined in a property file as well. Each

line in property file consists of the argument identifier without the dash “-“ (“i”, “pos”)

followed by the equal sign and the value or values of the argument. Values of arguments can

be divided by spaces or defined inside double quotes “"” (if spaces are parts of the argument

values). Some examples of the property file lines are these:

i = c:\input\in.txt

s= "c:\input directory with spaces\stopwords.txt"

n=500

m=PMI

l=3

o=c:\OutputFile.txt

pos = 3 7 2

The output of the tool is written on standard output or in a file (depending on the “-o”

parameter) with UTF-8 encoding, without BOM, with “\n” for newline. Each collocational

candidate is represented as a sequence of space-delimited lemmas with its collocational

strength delimited by a tab. The data is sorted by collocational strength in descending order.

An example of the output is this:

uljani repica 0.97

voden kozica 0.93

carski rez 0.90

limfni čvor 0.87

The IDF file can be constructed with a script distributed with the CollTerm system

“calculate_idf.py”. An example of calling that script is this:

python calculate_idf.py reference_corpus.txt idf.txt

The reference corpus file should consist of a sequence of lemmas, each in its row with

documents separated by empty rows. An example of the reference corpus file is this:

…

velik

dio

zemlja

odron

pobijediti

iskoristiti

šansa

drugi

…

 Contract no. 248347

D2.6 V3.0 Page 134 of 164

It is recommended to leave only content words in the reference corpus file since the main

objective of the IDF measure is to differentiate between the specificity of content words in a

domain corpus. The control over non-content words can better be obtained by defining stop-

words and phrases.

The output of the “calculate_idf.py” script is each lemma found in the reference corpus with

its’ IDF weight separated by a tab. An example of the IDF file is this:

biti 0.0627

htjeti 1.0737

godina 1.5452

sav 1.5555

moći 1.5973

imati 1.796

velik 1.8268

još 1.91

reći 2.0627

prvi 2.0848

The output of the CollTerm tool is written on standard output or in a file (depending on the

“o” argument) with UTF-8 encoding, without BOM, with “\n” for newline. Each term

candidate is by default represented as a sequence of space-delimited lemmas with its strength

following after a tab character. The data is sorted by strength in descending order. An

example of the default output is this:

generalan zastupnik 1.0

fiatov logo 0.83

završan obrada 0.82

zračan jastuk 0.79

ugljičan vlakno 0.67

stupanj prijenos 0.67

ugljičan dioksid 0.63

parkirni senzor 0.63

By intervening in the default value of the “seq” argument (“0”), different n-gram

representations can be obtained. By setting the argument value to “1” (“-seq 1”) each n-gram

is represented as the most frequent token sequence of that lemma n-gram:

generalnom zastupniku 1.0

fiatovim logom 0.83

završna obrada 0.82

zračnih jastuka 0.79

štetnih plinova 0.68

ugljičnih vlakana 0.67

stupnjeva prijenosa 0.67

ugljičnog dioksida 0.63

parkirnih senzora 0.63

 Contract no. 248347

D2.6 V3.0 Page 135 of 164

While the first output (“-seq 0”) is more adjusted for machines and further processing (such

as annotating the corpus), the second output (“-seq 1”) is more adjusted for human reading.

If there is a need for all token sequences representing a lemma n-gram, the value “2” for the

“seq” argument can be used. In this output between each token sequence and the score the

frequency of that token sequence is given. An example of such output is this:

generalnog zastupnika 5 1.0

generalnom zastupniku 12 1.0

fiatovim logom 5 0.83

završnom obradom 2 0.82

završne obrade 3 0.82

završnoj obradi 4 0.82

završnu obradu 1 0.82

završna obrada 10 0.82

zračne jastuke 5 0.79

zračnih jastuka 18 0.79

zračni jastuk 7 0.79

zračna jastuka 7 0.79

zračni jastuci 3 0.79

zračnim jastukom 1 0.79

…

If only terms are required for further processing, without the need for their weights, the

“terms” argument can be used with the value “1”. The previous output, in that case (argument

combination “-seq 2 -terms 1”), is as follows:

generalnog zastupnika

generalnom zastupniku

fiatovim logom

završnom obradom

završne obrade

završnoj obradi

završna obrada

zračne jastuke

zračnih jastuka

zračni jastuk

zračna jastuka

zračni jastuci

zračnim jastukom

…

 Contract no. 248347

D2.6 V3.0 Page 136 of 164

If only lemma n-grams without corresponding weights are needed (for corpus annotation or

similar), the argument combination “-seq 0 -terms 1” (or just “-terms 1” since “0” is the

default value for the “seq” argument) produces the following output:

generalan zastupnik

fiatov logo

završan obrada

zračan jastuk

štetan plin

ugljičan vlakno

stupanj prijenos

ugljičan dioksid

parkirni senzor

Normalization of the ranking method results can be obtained with the “norm” parameter. The

value of the parameter represents the upper bound while the lower bound is always 0. If the

value of the parameter is “0”, normalization is not performed. An example of the results

normalized to the [0,100] range (“-norm 100”) is:

generalnom zastupniku 100.0

fiatovim logom 83.29

završna obrada 81.58

zračnih jastuka 78.79

štetnih plinova 68.21

ugljičnih vlakana 66.58

…

The IDF file is mandatory when using the TF*IDF ranking method (the only ranking method

capable of extracting unigrams). If an IDF file is provided and any other ranking method but

TF*IDF is used, then a linear combination of the average IDF value and the normalized

ranking method is computed.

4.3.7 Integration with external tools

Since the tool does not use any tools outside python2.7, no integration with external tools is

necessary.

4.3.8 Useful references

The implemented association measures were chosen by examining primarily the following

literature:

 Stefan Evert: The statistics of word cooccurrences: Word pairs and collocations.

PhD thesis, Universität Stuttgart, Institut für Maschinelle Sprachverarbeitung,

2005.

 Pavel Pecina: Lexical association measures: Collocation Extraction. Studies in

Computational and Theoretical Linguistics. Institute of Formal and Applied

Linguistics, Prague, Czech Republic, 2009.

 Contract no. 248347

D2.6 V3.0 Page 137 of 164

 Saša Petrović et al: Extending lexical association measures for collocation

extraction. Computer Speech and Language 24 (2), 383–394, 2010.

Methods applied in CollTerm have been published in:

Mārcis Pinnis, Nikola Ljubešić, Dan Ştefănescu, Inguna Skadiņa, Marko Tadić, Tatiana

Gornostay. 2012. Term extraction, tagging, and mapping tools for under-resourced

languages. Proceedings of the 10
th

 Conference on Terminology and Knowledge

Engineering (TKE 2012), June 20-21, Madrid, Spain.

4.4 Terminology Extraction for English and Romanian

4.4.1 Overview and purpose of the tool

The Terminology Extraction (TE) tool is designed to identify mono and multi word

terminological terms in raw texts. It is designed to work for English and Romanian. In order

for it to work, the application needs the input files to be pre-processed. To do so, it calls for

the TTL web service (hosted at RACAI, WSDL file at http://ws.racai.ro/ttlws.wsdl). For more

information about the technology it implements, please consult ACCURAT Report D2.3. In

order to properly work, the application needs that all the files given in the input file be part of

the same domain, as it take them all into account for having enough statistical relevance, in

computing the probabilities of various words and expressions of being terms.

4.4.2 Changes from previous version

Aside from bug fixing, there are no functional modifications and/or changes to the user’s

interface of this tool.

4.4.3 Software dependencies and system requirements

Terminology Extraction is implemented in C# using .Net Framework 4.0. For machines using

Windows, the users should install .Net Framework 4.0. For machines using Linux, the users

should use Mono 2.10 (available from http://www.mono-project.com/Main_Page). The

machine should have at least 1GB of RAM.

4.4.4 Installation

TE does not require any special installation apart from .NET Framework.

4.4.5 Execution instructions

The command line for Terminology Extraction is:

TerminologyExtraction.exe --input [DATA_FILE] [--source [LANG]]

[--param [ap]=[TRUE]/[FALSE]]

[--param [kif]=[TRUE]/[FALSE]]

where:

“DATA_FILE” – Each line in the DATA_FILE should contain the path of an input file and the

path of an output file, tab separated;

http://ws.racai.ro/ttlws.wsdl
http://www.mono-project.com/Main_Page

 Contract no. 248347

D2.6 V3.0 Page 138 of 164

“LANG” – The language of the texts; Default: ro;

“-ap” – optional argument usable when the input files are already pre-processed and the

annotation is compliant with RACAI’s XML resource format; Default: FALSE;

“-kif” – optional argument allowing the user to keep the intermediary files; Default: FALSE.

4.4.6 Input/Output data formats

The input files are either raw UTF-8 texts or pre-processed texts (RACAI’s XML resource

format) (see the “ap” option of the TerminologyExtraction executable in the previous

section).

The output is the input text file with terminological terms tagged, according to MUC-7 style.

4.4.7 Contact

For further information and technical support installing and/or running this tool, please email

to Dan Ştefănescu: danstef@racai.ro.

mailto:danstef@racai.ro

 Contract no. 248347

D2.6 V3.0 Page 139 of 164

5 Tools for named entity and terminology mapping

This section covers the tools that perform multi-lingual named entity and terminology

mapping and are created within the ACCURAT project.

The tools included in this section of the ACCURAT toolkit are:

 Multi-lingual named entity and terminology mapper (developed by USFD; see

section 5.1);

 NERA2 language independent named entities mapper (developed by RACAI; see

section 5.2);

 TerminologyAligner language independent terminology mapper (developed by

RACAI; see section 5.3).

 P2G: A tool to extract term candidates from aligned phrases (developed by LT;

see section 5.4).

5.1 Multi-lingual named entity and terminology mapper

5.1.1 Overview and purpose of the tool

Many events such as news events are reported in several languages. Each such report will

vary in detail. The content is also likely to be tailored to a specific reader group or is entirely

influenced by its writer on how he/she sees the entire event. However, what will be common

in all the different reports are the use of some named entities and/or some technical terms.

Named entities can be person, location or organization names but also other named entity

types such as dates, day names or currencies are considered as named entities. As technical

term one could regard specific names used, for instance, only in medicine or automotive

domain.

Reports in different languages about the same event can be regarded as comparable because

they are likely to share some textual units which are translation of each other. Named entities

and technical terms can play an important role in finding such textual units. For instance, if

two sentences in different languages contain the same named entity or the same technical

term it is likely that these sentences contain some translation units. Sentences in different

languages which do not share named entities or technical terms are less likely to have such

units. However, before such translation units are identified one has to first identify entries in

these multi lingual reports which refer to the same named entity or technical term.

We implemented a multi-lingual language independent application (MapperUSFD), which

aims to map such entries in reports written in different languages to each other.

5.1.1.1 NE mapping

For Named Entity (NE) mapping we implemented two scenarios. In the first scenario the NE

mapper takes as input two comparable documents in text format and outputs pair of NEs with

scores indicating their level of mapping. On both sides we use OpenNLP

(http://incubator.apache.org/opennlp/) to identify sentence boundaries. Next, on the English

text the mapper applies OpenNLP NER to extract English NEs. On the foreign text it uses

case information to identify candidates as foreign NEs. It treats all capitalized words as NEs

http://incubator.apache.org/opennlp/

 Contract no. 248347

D2.6 V3.0 Page 140 of 164

and uses for comparison with the English NEs. Consecutive capitalized words are treated as a

single NE. For each word in the beginning of each sentence we compare its lowercase variant

with a list of lowercase words. If the lowercase variant is found in the list then it is not treated

as NE. After having collected NEs in English and so called NEs in the foreign language we

compare each English NE with all the other foreign NEs. The comparison is computed using

cognate based methods described in the ACCURAT Deliverable D2.3 “Report on

information extraction from comparable corpora”.

In the second scenario the mapper uses proper NE identification on both sides. On English

side it continues using the OpenNLP NER. On the foreign text side it assumes that the NEs

are identified using the NER systems described in D2.3. Having both lists of NEs with their

types (PERSON, LOCATION, ORGANIZATION) it uses cognate based methods to align

them. However, instead of comparing every English NE with every foreign NE it compares

every English NE with type X with every foreign NE of the same type. For the comparison

we use cognate methods described in D2.3.

5.1.1.2 Terminology mapping

USFD applies the same cognate based approach as in NE mapping to align terminologies. On

English side an English terminology extractor is used. On the target one the ACCURAT

specific tools are used. Extracted terminologies from both sides are aligned using cognate

based methods.

For English term extraction the KEA TE extractor can be used (http://www.nzdl.org/Kea/).

On the foreign sites we use the TE tools described in D2.3.

5.1.2 Changes from previous version

The updated version contains a bug-fix that resolves a system crash on specific input data.

We also replaced KEA TE with Tilde’s wrapper system for CollTerm developed by Tilde and

FFZG for automatic collocation extraction to extract English terms. Details of the adaptation

are described in the ACCURAT project’s Deliverable D2.3.

We also integrated a dictionary based translation for translating terms from the target

language into the source language. We first extract Terms from the target language texts and

then translate each term into the source language using a dictionary. The translation is single-

word based. To perform the translation the tool requires target-to-source dictionaries. These

dictionaries must be stored in the “dict” subdirectory of MapperUSFD and must have the file

name according to “targetLangCode” + “_” + “sourceLangCode” + “.txt”, e.g. “de_en.txt”.

The format of the dictionaries is the same as for DictMetric.

5.1.3 Software dependencies and system requirements

The mapper is implemented in the programming language Java. It requires the following

settings to run:

1. JRE (Java Runtime Environment) 1.6

2. 1+ GB RAM

3. OpenNLP tools (can be downloaded from http://incubator.apache.org/opennlp/)

http://www.nzdl.org/Kea/
http://incubator.apache.org/opennlp/

 Contract no. 248347

D2.6 V3.0 Page 141 of 164

4. KEA TE tool (is packaged with the tool)

5.1.4 Installation

The mapper does not require any installation.

5.1.5 Execution instructions

The application can be run using the following command:

java -jar MapperUSFD.jar [method] [mappingFile] [outputFile] [taggingInfo]

[sourceLang] [foreignLang] [similarityThreshold]

 method:

“NE” – select this when you want NE mapping, please specify also

taggingInfo: NE0, NE1, NE2

(NE0 means both input files are not NE tagged, NE1 means the foreign files are

NE tagged according to MUC-7 style, NE2 means both input files are NE tagged

according to MUC-7 style).

“T” – select this when you want term mapping. Both input files must be tagged with

terms, please also specify

taggingInfo: T0, T1, T0-Trans, T1-Trans (T0 means the foreign files are tagged

with terms, T1 means both input files are tagged with terms. In case “-Trans” is

used in the “taggingInfo”, the tool will perform a dictionary based translation for the

target terms. The terms will be translated into the source language. Style of tags:

<TENAME>value</TENAME>)

mappingFile: Path to the files (full paths) where the mapping information between the input

files is given. Structure “enFile\tforeignFile\n”.

outputfile: path to the output file where results will be written.

sourceLang: language code of the source language e.g. en for English.

 foreignLang: language code of the target language e.g. el for Greek.

similarityThreshold: This is the mapping score. All term pairs that have a mapping or

similarity score above the given threshold will be returned to the user. Pairs of terms that

have a similarity score below the threshold will be ignored.

Please also make sure that when you run the mapper with the settings NE0, NE1 and T0 that

you run the command from the folder where all the required resources are saved. These

resources are the entire folders (docs, data, workingFolderForTE and testdocs) and are

provided with the tool.

5.1.6 Input/Output data formats

Input to the mapper is text that is encoded in UTF-8.

For NE mapping the following input formats are needed:

1. English text (UTF-8) without any mark-up language tags such as HTML tags. The

text has to be clean. It is not required to have formatting, such as, single sentence

per line, etc.

 Contract no. 248347

D2.6 V3.0 Page 142 of 164

2. Foreign text (UTF-8):

a. Scenario one input: clean text with the settings as in English text.

b. Scenario two input: clean text with the settings as in English text and NEs

have to be marked-up according to the MUC-7 style (e.g. <ENAMEX

TYPE=”PERSON”>Barack Obama</ENAMEX>)

For TE mapping the following input formats are needed:

1. English text (UTF-8) without any mark-up language tags such as HTML tags. The

text has to be clean. It is not required to have a formatting, such as, a single

sentence per line, etc.

2. Foreign text (UTF-8): clean text with the settings as in English text and terms

have to be marked-up according to the required style (e.g.

<TENAME>aspirin</TENAME>)

Output of both the NE and term mapper is a list of NE/term pairs with scores. The scores

indicate how strong the mapping is. A score of 1 means strong map and a score of 0 means no

match.

5.1.7 Integration with external tools

As an external tool the NE/term mapper requires OpenNLP. OpenNLP can be downloaded

from http://incubator.apache.org/opennlp/. For NE mapping (in case of scenario two) it

requires a NER (Named Entity Recognizer) for the foreign language input text (ACCURAT

related tools are described in D2.3). The term mapper requires the KEA tool to perform term

identification for English text. For the foreign text the term extraction can be performed by

the tools described in D2.3.

5.1.8 Contact

For further information and technical support installing and/or running this tool, please email

to Ahmet Aker: a.aker@dcs.shef.ac.uk.

5.2 NERA2: Language Independent Named Entity Mapping

5.2.1 Overview and purpose of the tool

Named Entity Aligner (NERA2) tool is designed to map the named entities extracted from

comparable or parallel documents. The algorithm is language independent and the application

is intended to work for any pair of languages as long as a translation equivalents table exists

for that pair of languages for occurrence forms. As input, the application needs the

corresponding documents (comparable or parallel) with named entities marked according to

MUC-7 style (for a more detailed format description, refer to section 3.1.6.2 of the TildeNER

system). NERA2’s input is perfectly compatible with NERA1 output (see section 3.3).

http://incubator.apache.org/opennlp/
mailto:a.aker@dcs.shef.ac.uk

 Contract no. 248347

D2.6 V3.0 Page 143 of 164

5.2.2 Changes from the previous version

Aside from bug fixing, there are no functional modifications and/or changes to the user’s

interface of this tool.

5.2.3 Software dependencies and system requirements

NERA2 is implemented in C# using .NET Framework 4.0. For machines using Windows, the

users should install .Net Framework 4.0. For machines using Linux, the users should use

Mono 2.10 (http://www.mono-project.com/Main_Page). The machine should have at least

1GB RAM. In order to work for a pair of languages the application requires a translation

equivalence table (e.g. a GIZA++ translation lexicon) at the word form level. A line in that

table should be:

srcLang word <tab> trgLang word <tab> probability

and the name of the table should be: srcLang_trgLang (ex.: en_ro)

5.2.4 Installation

NERA2 does not require any installation other than the .NET Framework.

5.2.5 Execution instructions

NERA2.exe --input [FILE] --output [FILE] [--source [LANG]] [--target

[LANG]] [--param aa=TRUE|FALSE]

where the command line switches have the following meanings:

“--input FILE” – Each line in the input file should contain the paths of two corresponding

files (comparable or parallel) tab separated, having the Named Entities annotated in MUC-7

style;

“--output FILE” – The output file contains named entities translation equivalents and their

assigned probability scores, extracted from the input files.

“--source [LANG]” – source language. By default is: “en”

“--target [LANG]” – target language. By default is: “ro”

“--param aa=TRUE|FALSE” – optional parameter signalling the existence of additional

XML-like mark-up in the input files.

5.2.6 Input/Output data formats

The input should be UTF-8 text containing NE markups in the MUC-7 style.

The output contains named entities translation equivalents and their assigned probability

scores, extracted from the input files. Each line in the output file is of the form:

[source NE]<tab>[target NE]<tab>[SCORE]

5.2.7 Contact

For further information and technical support installing and/or running this tool, please email

to Dan Ştefănescu: danstef@racai.ro.

http://www.mono-project.com/Main_Page
mailto:danstef@racai.ro

 Contract no. 248347

D2.6 V3.0 Page 144 of 164

5.3 A language independent terminology aligner

5.3.1 Overview and purpose of the tool

The TerminologyAligner tool is designed to map the terminological terms extracted from

comparable or parallel documents. The algorithm is language independent and the application

is intended to work for any pair of languages as long as a translation equivalents table exists

for that pair of languages for occurrence forms. As input, the application needs the

corresponding documents (comparable or parallel) with terminology marked according to

MUC-7 style. Terminology Aligner’s input is perfectly compatible with Terminology

Extraction output (see section 4.4).

5.3.2 Changes from the previous version

Aside from bug fixing, there are no functional modifications and/or changes to the user’s

interface of this tool.

5.3.3 Software dependencies and system requirements

TerminologyAligner is implemented in C# using .Net Framework 4.0. For machines using

Windows, the users should install .Net Framework 4.0. For machines using Linux, the users

should use Mono 2.10. The machine should have at least 1GB RAM. In order to work for a

pair of languages the application requires a translation equivalence table (e.g. GIZA++

translation lexicons) at the word form level. A line in that table should be:

srcLang word <tab> trgLang word <tab> probability

and the name of the table should be: srcLang_trgLang (ex.: en_ro).

5.3.4 Installation

TerminologyAligner does not require any special installation steps other than those required

by .NET Framework.

5.3.5 Execution instructions

The command line for TerminologyAligner is:

TerminologyAligner.exe --input [FILE] --output [FILE] [--source [LANG]] [--

target [LANG]] [--param aa=TRUE|FALSE]

where:

“--input FILE” – Each line in the input file should contain the paths of two corresponding

files (comparable or parallel) tab separated, having the terminology annotated in MUC-7

style;

“--output FILE” – The output file contains terminology translation equivalents and their

assigned probability scores, extracted from the input files.

“--source [LANG]” – source language. By default is: “en”

“--target [LANG]” – target language. By default is: “ro”

“--param aa=TRUE|FALSE” – optional parameter signalling the existence of additional

XML-like mark-up in the input files.

 Contract no. 248347

D2.6 V3.0 Page 145 of 164

5.3.6 Input/Output data formats

The input should be UTF-8 text containing terminology mark-ups in the MUC-7 style.

The output contains terminological translation equivalents and their assigned probability

scores, extracted from the input files. Each line in the output file is of the form:

[source term] <tab> [target term] <tab> [SCORE]

5.3.7 Contact

For further information and technical support installing and/or running this tool, please email

to Dan Ştefănescu: danstef@racai.ro.

5.3.8 Useful references

Methods applied in the TerminologyAligner have been published in:

Mārcis Pinnis, Nikola Ljubešić, Dan Ştefănescu, Inguna Skadiņa, Marko Tadić, Tatiana

Gornostay. 2012. Term extraction, tagging, and mapping tools for under-resourced

languages. Proceedings of the 10
th

 Conference on Terminology and Knowledge

Engineering (TKE 2012), June 20-21, Madrid, Spain.

5.4 P2G: A tool to extract term candidates from aligned

phrases

5.4.1 Overview and purpose of the tool

P2G (PhraseTable2Glossary) is a tool which extracts well-formed term candidates from

phrase-aligned data, be it phrase tables or other outputs of phrase alignment (like AnymAlign,

PEXACC etc.).

The principal approach is to apply a series of filters to the input candidate phrases, to output

only the ones which can really be terms. Term candidates are brought into the right shape

(lemmatisation, true-casing, gender and number agreement (in case of multi-words) etc.

 First, the tool creates a lattice of <lemma, POS> pairs for each word of the input

candidate, using a lemmatiser (and decomposer for German).

 This lattice is then compared to a filter of (single and multiword) structures which

lets only pass sequences having a “legal” term structure.

 This is done both for source and target candidate.

 In case of success, a proper term entry is created, by lemmatising the head of the

term into singular form, by true-casing all its parts (capitalising nouns,

uppercasing acronyms etc.), and by creating proper agreements between head

nouns and modifying adjectives (using a noun gender defaulting mechanism).

 Finally, a filter can be applied to filter out term candidates which are already

known (e.g. from a general-purpose lexicon, or stop words etc.), and only the rest

is output [not in the current version].

Tests have shown that in the best case (using MOSES-aligned data) the overall error rate of

the P2G tool is about 5% (2-3% each coming from errors in German or English pattern

mailto:danstef@racai.ro

 Contract no. 248347

D2.6 V3.0 Page 146 of 164

extraction or term creation); additional 6% errors result from incorrect phrase alignments by

MOSES, so the overall error rate is about 11%. This is considered sufficient for human post-

editing. Speed is about 100K phrase table entries per second, with about every 500th phrase

table entry containing a well-formed term (in the automotive test, P2G created about 15.7 K

terms from a 6.9 million phrase table, in 65 seconds).

5.4.2 Changes from the previous version

This is a new tool added to the second version of D2.6. The third version improves language

coverage to French, Spanish, Italian, and Portuguese.

5.4.3 Software dependencies and system requirements

The system requires a preinstalled Java runtime environment. In order to perform term

translation candidate extraction the user’s system has to be configured to use a heap size for

java from 512MB up to at least 1024MB (for instance, execute the java command line with

“java -Xms512m -Xmx1024m”).

5.4.4 Installation

The system comes in a zip file, which must be extracted. It contains two items: the “jar” file

and a directory containing all linguistic resources required by the program. Both items can be

placed where the users want; the only relevant information for later use is the “datapath”,

which indicates where the data directory is; this information must be given to the tool as a

parameter at runtime later on.

5.4.5 Execution instructions

It is a command line call:

java -jar phrt2glomain.jar

The following parameters have to be passed to the command line in a strictly defined order:

 “infile” – the file containing the data to be processed, e.g. a phrase table. Infile

should be encoded in UTF-8 without BOM.

 “outfile” – the file containing the term candidates. Outfile will be encoded in

UTF-8 without BOM.

 “source language” – the ISO abbreviation of the source language. Legal values

are: “de”, “en”.

 “target language” – the ISO abbreviation of the target language. Legal values

are: “de”, “en”.

 “datapath” - the absolute pathname where the language resources are located.

 “input format” – the format of the input file. Legal values are: “phrasetable”,

“anymalign”, „pexacc“.

 “threshold” – the threshold is a frequency information in case of “phrasetable” or

“anymalign” input, and a probability (like “0.4”) in case of a “phrasetable” input.

 “stoplist” – a lexical filter which eliminates ‘known’ term candidates from the

term output list. This parameter is optional.

 Contract no. 248347

D2.6 V3.0 Page 147 of 164

An example is given below:

5.4.6 Input / output data formats

5.4.6.1 Input formats

Three formats are supported: “phrasetable”, “anymalign”, and “pexacc”.

5.4.6.1.1 PhraseTable Format

This format is produced by standard SMT using the MOSES toolkit. It looks as follows:

Each record consists of 5 parts, separated by three pipes (|||); relevant sections are source and

target candidate (col. 1 and 2), translation probability (3) and frequency (5).

5.4.6.1.2 AnymAlign Format

This format consists of records; each record has 5 fields, separated by a TAB:

Relevant fields are source and target candidate (col. 1 and 2) and frequency (col. 5).

 Contract no. 248347

D2.6 V3.0 Page 148 of 164

5.4.6.1.3 PEXACC format

This format consists of records containing three elements: source, target, and probability.

While the original PEXACC output provides this information in separate lines (cf. figure), the

P2G tool expects it in one single line; so a little converter must be used to bring it into the

format below:

5.4.6.2 Output format

The output contains records with term candidates. Each record contains four fields, separated

by TABs:

 Source term and its part of speech (No - noun, Vb - verb, Ad - adjective)

 Target term and its part of speech

5.4.7 Integration with external tools

P2G is a stand-alone tool, with no integration attempted or required.

5.4.8 Contact

For further information and technical support installing and/or running this tool, please email

to Gr. Thurmair, Linguatec (g.thurmair@linguatec.de).

5.4.9 Useful references

There is more documentation available:

mailto:g.thurmair@linguatec.de

 Contract no. 248347

D2.6 V3.0 Page 149 of 164

 Thurmair, Gr., Aleksić, V., 2012: Creating term and lexicon entries from phrase

tables. Proc. EAMT, Trento

This paper describes the approach, the workflow, and some evaluation results.

 P2G Software description, 2012

This documentation gives details on the format of the resource files, call

hierarchy, description of classes, and details on the main data structures.

Both documentations come with the source code package.

 Contract no. 248347

D2.6 V3.0 Page 150 of 164

6 Other useful tools

This section covers the tools that are useful for additional tasks, such as, document

translation, dictionary creation and have been developed within the ACCURAT project in

order to support the tools described in previous sections.

The tools included in this section of the ACCURAT toolkit are:

 A toolkit for text translation using Google translation API or Microsoft

translation API (developed by CTS; see section 6.1).

 DEACC: lexical dictionary extractor from comparable corpora (developed by

RACAI; see section 6.2).

6.1 A toolkit for text translation using Google translation API

or Microsoft translation API

6.1.1 Overview and purpose of the tool

This Java toolkit allows users to translate text collections from a source language to a target

language by using the available Google translation Java API or Microsoft Bing translation

Java API. Currently, Google translation API supports 63 languages and Bing Translation API

supports 36 languages.

6.1.2 Changes from the previous version

There are no changes from the previous version.

6.1.3 Software dependencies and system requirements

(1) System: platform independent (Java program).

(2) Internet: Given that both Google and Bing translation API require requests to be sent to

remote servers for translation, the system should ensure that internet connectivity is available.

(3) JRE: 1.6.0 (not specified, lower versions should also work OK).

6.1.4 Installation

No installation other than the JRE engine is required. For the latter, just follow the

instructions of the wizard.

6.1.5 Execution instructions

Line length limits: The length of each line in a document should not exceed 5000

characters for Google translation API, and 5000 Bytes for Microsoft translation API. So

in the text collection, if there is line with length over this limit, the user should split into

several shorter lines.

Google translation API and Bing translation API have different length limits for each

translation request. For Google translation API, the text String length limit of each call is

5000 character for all the supported languages.

For Bing translation API, the length limit is 10,000 Bytes for most of the Western languages

(if in that language encoding, 1 character takes 1 byte). However, for Greek, Chinese and

 Contract no. 248347

D2.6 V3.0 Page 151 of 164

Russian (and maybe some other languages), the length limit is around 5000 bytes. This is

because in Greek and Russian a character takes 2 bytes while in Chinese a character takes 3

bytes. This conversion is the same under the UTF-8 encoding.

Therefore, in our toolkit we set the length limit of a translation request at 5000 characters for

Google translation API and 5000 bytes for Microsoft translation API.

Also, as we prepare the text by line, we can send each line as text string for translation.

However, for a large collection of documents, this will require too many calls and can

quickly reach the translation access limit (as both Google and Microsoft APIs will report

errors or exceptions if there are too many translation requests within a relatively short time

from the same IP address). Therefore, in order to reduce the number of translation requests, it

is better to send longer strings for translation (i.e. around 5000 characters). This is because, as

long as input string length does not exceed the length limit, the translation access limit of

both Google and Microsoft APIs are based on the number of translation requests, but not the

length of overall input string length.

The toolkit supports two different manners of translation. For each translation call, you can

send either a text string, or a string array for translation. Technically, the calls are:

Manner 1:

String result =

Translate.execute(String text, SourceLanguage, TargetLanguage)

Manner 2:

String[] result =

Translate.execute(String[] text, SourceLanguage, TargetLanguage)

Command line usage:

java -jar Translation.jar option=1|2 SourceLanguage TargetLanguage

SourcePath TargetPath

Translation.jar: GoogleTranslate.jar or BingTranslate.jar

Options:

option=1: merge several lines into a long string for translation (Manner 1);

option=2: store lines as a string array for translation (Manner 2);

 SourceLanguage: one of the languages supported by the specific engine (see below);

 TargetLanguage: one of the languages supported by the specific engine (see below);

 SourcePath: the path to the text collection to be translated (absolute path to the input

data directory);

 TargetPath: the destination directory where to store translations (directory path – the

directory has to exist, otherwise the API will return an exception).

 Contract no. 248347

D2.6 V3.0 Page 152 of 164

Note that the parameters are separated by space, and both the source language and the target

language parameters should be uppercased. The supported language list is as follows:

Google translation API:

AUTO_DETECT AFRIKAANS ALBANIAN AMHARIC ARABIC ARMENIAN AZERBAIJANI BASQUE

BELARUSIAN BENGALI BIHARI BULGARIAN BURMESE CATALAN CHEROKEE CHINESE

CHINESE_SIMPLIFIED CHINESE_TRADITIONAL CROATIAN CZECH DANISH DHIVEHI DUTCH

ENGLISH ESPERANTO ESTONIAN FILIPINO FINNISH FRENCH GALICIAN GEORGIAN GERMAN

GREEK GUARANI GUJARATI HEBREW HINDI HUNGARIAN ICELANDIC INDONESIAN

INUKTITUT IRISH ITALIAN JAPANESE KANNADA KAZAKH KHMER KOREAN KURDISH KYRGYZ

LAOTHIAN LATVIAN LITHUANIAN MACEDONIAN MALAY MALAYALAM MALTESE MARATHI

MONGOLIAN NEPALI NORWEGIAN ORIYA PASHTO PERSIAN POLISH PORTUGUESE PUNJABI

ROMANIAN RUSSIAN SANSKRIT SERBIAN SINDHI SINHALESE SLOVAK SLOVENIAN SPANISH

SWAHILI SWEDISH TAJIK TAMIL TAGALOG TELUGU THAI TIBETAN TURKISH UKRANIAN

URDU UZBEK UIGHUR VIETNAMESE WELSH YIDDISH

Microsoft translation API:

AUTO_DETECT ARABIC BULGARIAN CHINESE_SIMPLIFIED CHINESE_TRADITIONAL CZECH

DANISH DUTCH ENGLISH ESTONIAN FINNISH FRENCH GERMAN GREEK HATIAN_CREOLE

HEBREW HUNGARIAN INDONESIAN ITALIAN JAPANESE KOREAN LATVIAN LITHUANIAN

NORWEGIAN POLISH PORTUGUESE ROMANIAN RUSSIAN SLOVAK SLOVENIAN SPANISH

SWEDISH THAI TURKISH UKRANIAN VIETNAMESE

Run examples:

Linux command:

java -jar GoogleTranslate.jar option=1 LATVIAN ENGLISH

/home/fzsu/TranslationToolkit/sample/LV /home/fzsu/TranslationToolkit/LV-

translation

Windows command:

java -jar GoogleTranslate.jar option=1 LATVIAN ENGLISH

C:\TranslationToolkit\sample\LV C:\TranslationToolkit\LV-translation

The above command will translate the Latvian documents in the source path

"/home/fzsu/TranslationToolkit/sample/LV" (Linux platform) or

"C:\TranslationToolkit\sample\LV" (Windows platform) into English, and then save them in

the target path "/home/fzsu/TranslationToolkit/LV-translation" or (C:\TranslationToolkit\LV-

translation). A folder called "translation" in Directory "LV-translation" will store all the

translated documents.

6.1.6 Input/Output data formats

Both input files and output files are plain UTF-8 text files.

6.1.7 Integration with external tools

None noted other than the JRE engine.

 Contract no. 248347

D2.6 V3.0 Page 153 of 164

6.1.8 Contact

For further information and technical support installing and/or running this tool, please email

to Fangzhong Su: smlfs@leeds.ac.uk.

6.1.9 Useful references

Google Translation API: http://code.google.com/apis/language/translate/overview.html

Microsoft Translation API: http://www.microsofttranslator.com/tools/

6.2 DEACC: lexical dictionary extractor from comparable

corpora

6.2.1 Overview and purpose of the tool

The purpose of the tool is to extract bilingual lexical dictionaries (word-to-word) from

comparable corpora. The corpus does not have to be aligned at any level (document,

paragraph, etc.)

The method implemented in this tool is introduced by (Rapp, 1999). The application basically

counts word co-occurrences between unknown words in the comparable corpora and known

words from a Moses extracted general domain translation table (which from now on will be

referred to as the base lexicon). We adapted the algorithm to work with polysemous entries in

the translation table (very frequent situation which is not treated in the standard approach).

As the purpose of this tool (and of all the other tools in the project) is to extract from

comparable corpora data that would enrich the information already available from parallel

corpora, it seems reasonable to focus on the open class (versus closed class) words.

Obviously, this approach reduces the space and time necessities. Moreover, the closed class

words we decided to ignore (pronouns, prepositions, conjunctions, articles, auxiliary verbs)

do not behave according to any semantic pattern (they are too vague); therefore, they are not

useful in an approach that is based on the tendency of some words to occur in the same

semantic context as other words. Because in many languages, the auxiliary verbs can also be

main verbs, frequently basic concepts in the language (see “be” or “have” in English), and

most often the POS-taggers don’t discriminate correctly between the two roles, we decided to

eliminate their main verb occurrences also. For this purpose, the user is asked to provide a list

of all these types with all their forms in the language of interest other than English.

6.2.2 Changes from the previous version

There are no changes from the previous version.

6.2.2.1 A short description of the algorithm

Firstly on the corpus of the source language and secondly on the corpus of the target

language, a co-occurrence matrix is computed, whose rows are all word types occurring in

the corpus and whose columns are words in that corpus appearing in the base lexicon.

Initially, the co-occurrence matrix contains the co-occurrence frequencies.

mailto:smlfs@leeds.ac.uk
http://code.google.com/apis/language/translate/overview.html
http://www.microsofttranslator.com/tools/

 Contract no. 248347

D2.6 V3.0 Page 154 of 164

The next step is to replace all these frequencies with the log-likelihood scores. In the end, a

similarity computation is done between all the vectors in the source matrix and all the vectors

in the target matrix.

For a specific source vector, the first ten target vectors with the highest similarities are

considered to be the possible translations of the corresponding source-language word. The

similarity score can be used in a Moses type decoder to select the most probable translation of

the word in a specific context.

The measure used to compute the similarity score is DiceMin. Please refer to (Gamallo, 2008)

for a discussion about the efficiency of several similarity metrics combined with two

weighting schemes: simple occurrences and log likelihood.

6.2.3 Software dependencies and system requirements

The aligner is implemented in the programming language C#, under the .NET Framework

2.0. It requires the following settings to run:

1. .NET Framework 2.0.

2. 2+ GB RAM (4 GB preferred)

3. On a multi-processing system, the computing of the similarity score can be

divided on different processors at the user’s request, by a parameter in the

configuration file of the application.

6.2.4 Installation

The application does not require any installation aside that of .NET Framework which is

publicly available.

6.2.5 Execution instructions

Given that the user machine has .NET Framework 2.0 installed; the application can be run as

an executable file both under Windows and Linux platforms.

The “.exe” file must be placed in a working folder, containing two subfolders: “source

corpus” and “target corpus” and two other files: the “base lexicon” and a configuration file

named: “cooc.cfg”

The “source corpus” and “target corpus” folders will contain one or more documents, named

after the rule: “*_corpus.txt”. The text in the documents should be in the format:

word_form1|lemma1|POS1 word_form2|lemma2|POS2 …

The base lexicon is in the format:

source_word_form|target_word_form

The “cooc.cfg” file, reproduced below, is self-explanatory:

//1. if the user's machine has multiple processors, the application

// can apply a function that splits the time consuming problem of

// computing the vector similarities and runs it in parallel.

*multithreading:yes|no (default=no)

 Contract no. 248347

D2.6 V3.0 Page 155 of 164

//2. to avoid overloading the memory, the application gives the user

// the opportunity to decide how many of the source/target vectors

// are loaded in the memory at a specific moment; it avoids

// overloading the memory but can bring an important time delay;

// this parameter is activated only for "multithreading:yes"

// default value: 0; if the parameter's value is bigger than the

// number of vectors in the matrix, its use becomes obsolete.

*loading:int (default=0)

//3. the minimal frequency in the corpus of the words the user wants

// to find translation equivalents for: being based on word

// counts, the method is sensitive to the frequency of the words.

// The bigger frequency, the better performance. This parameter

// should be at least bigger than 3 and should take into account

// the corpus size.

*frequency:int (default=3)

//4. the user can specify the length of the text window in

// which co-occurrences are counted.

*window:int (default=5)

//5. asking for the log-likelihood of a co-occurrence to be bigger than

// a certain threshold, the user can reduce the space and time costs

*ll:int (default=3)

//6. the user is asked to introduce a list of all the auxiliary/modal

// verbs for the source language, with all their

// morphological variants, separated by white space.

*sourceamverblist:string (default=is are be will shall may can)

//7. the user is asked to introduce a list of all the auxiliary/modal

// verbs for the target language, with all their morphological variants,

// separated by white space.

// Default value is set for Romanian.

*targetamverblist:string (default=este sunt suntem sunteţi fi poate pot

putem puteţi)

//8. the user can decide if he/she allows to the application to cross

// the boundaries between the parts of speech (i.e. to translate a

// noun as a verb).

*crossPOS:yes|no (default:no)

//9. the user has to provide a list of all the open class POS labels

 Contract no. 248347

D2.6 V3.0 Page 156 of 164

// (i.e. labels for common nouns, proper nouns, adjective, adverbs

// and main verbs) of the source language.

// Default value uses MSDs first two letters.

*sPOSlist:string (default=nc np a r vm)

//10. the user has to provide a list of all the open class POS labels

// (i.e. labels for common nouns, proper nouns, adjective, adverbs

// and main verbs) of the target language.

// Default value uses MSDs first two letters.

*tPOSlist:string (default=nc np a r vm)

//11. the user can decide if a cognate score (Levenshtein distance) will

// be taken into account in computing the vector similarities for

// proper nouns matching.

*LD:yes|no (default=yes)

// Working settings for all parameters above for EN-RO processing:

multithreading:yes

loading:5000

frequency:10

window:5

ll:3

sourceamverblist:am is are was were been beeing had has have be will would

shall should may might must can could need

targetamverblist:este sunt suntem va voi vor vom fi pot putea puteam

puteaţi

crossPOS:no

sPOSlist:nc np a r vm

tPOSlist:nc np a r vm

LD:yes

6.2.6 Input/Output data formats

6.2.6.1 Input data formats

The “source corpus” and “target corpus” folders will contain one or more UTF-8 documents,

named after the rule: “*_corpus.txt”. The text in the documents should be in the format:

“word_form1|lemma1|POS1 word_form2|lemma2|POS2 word_form3|lemma3|POS3 …”

…

The base lexicon is in the format:

source_word_form|target_word_form<new line>

…

The base lexicon and configuration file must also be UTF-8 encoded.

 Contract no. 248347

D2.6 V3.0 Page 157 of 164

6.2.6.2 Output data format

The program outputs a UTF-8 dictionary in the format:

<source_word^POS>|<target_candidate1^POS><score>#<target_candidate2^POS><sc

ore>…#<target_candidate10^POS> <score><new line>

…

6.2.7 Integration with external tools

The application does not need any external tool.

6.2.8 Contact

For further information and technical support installing and/or running this tool, please email

to Elena Irimia: elena@racai.ro.

6.2.9 Useful references

Gamallo, P. 2008 Evaluating two different methods for the task of extracting bilingual

lexicons from comparable corpora. In Proceedings of LREC 2008 Workshop on Comparable

Corpora, Marrakech, Morocco, pp. 19-26. ISBN: 2-9517408-4-0.

Rapp, R. 1999. Automatic Identification of Word Translations from Unrelated English and

German Corpora. In Proceedings of the 37th Annual Meeting of the Association for

Computational Linguistics (ACL'99), pages 519-526, college Park, Maryland, USA.

6.3 Sisyphos-II: MT-Evaluation tools

6.3.1 Overview and purpose of the tool

This is a set of tools for interactive
16

 MT output evaluation. It supports the main non-

automatic evaluation metrics used today, which are:

 Determination of the quality of an MT output, in terms of adequacy and fluency

(called „absolute evaluation”). This answers the question: „How good is the MT

output?”

 Determination of the quality of an MT output in comparison to another MT

output (called “comparative evaluation”). It answers the question “Which output

(of two systems) is better?” Note that it does not answer the question on the real

output quality.

 Determination of the distance of an MT output to a correct human translation

(called “post-editing evaluation”). It answers the question on the effort needed to

create a good translation from a raw MT output, both in terms of edit distance and

of required post-editing time.

16

 The first version of Sisyphus was created by the Belgian METAL team in 1987, in pre-Windows times, to

speed up system development. This kind of tools is still needed.

mailto:elena@racai.ro

 Contract no. 248347

D2.6 V3.0 Page 158 of 164

Three little standalone tools have been created to support these evaluations; they can be given

to external evaluators (for instance, freelancers), together with a pack of evaluation data, so

evaluators can process them offline, and return the results. This workflow can be seen as an

alternative to online-access tools as used in WMT.

6.3.2 Changes from the previous version

Sisyphos-II is a new addition to the ACCURAT toolkit.

6.3.3 Software dependencies

In order to run the MT evaluation tools the user must have a Java runtime (1.7 and higher)

installed.

6.3.4 Installation

The system comes in a zip file, which must be extracted into a directory of user’s choice; this

directory will contain both the applications and the files used for processing. The

subdirectory “lib” contains an auxiliary JAR file (for XML code handling).

The applications are called:

 AbsoluteEvaluation.jar

 ComparativeEvaluation.jar

 PostEditingEvaluation.jar

The package also contains three example files for easier start-up, the DTDs describing the

evaluation files (output files of the applications), and this documentation in a PDF format.

6.3.5 Execution instructions

The main functionality of the tools is:

 Import of a new evaluation „package”

 Interactive support of the evaluation procedure

 Creation of result files containing statistics.

The data flow is depicted in Figure 8. The main files are the translation and evaluation XML

files. Each tool works with two XML files, called “translation-{abs|comp|post}.xml” (created

by the import function from the source and target language files produced by the MT

systems), storing the data to be evaluated, and “evaluation-{abs|comp|post}.xml”, created

during interactive evaluation, storing the evaluation result. The file names are fixed. The

result of the evaluation is stored in the evaluation XML files; an overview file can be created

containing basic statistics.

Figure 8 Data flow

 Contract no. 248347

D2.6 V3.0 Page 159 of 164

6.3.5.1 Import of evaluation data

The tool expects the evaluation data in the following format:

 UTF-8 encoding

 one line per sentence

 one file per language

 parallel numbering of sentences.

This is the basic format as produced by systems like MOSES.

By clicking on “Import” in any of the tools, the import screen is displayed (see Figure 9),

asking for:

 The name/id of the evaluator

 Source and target language involved

 File name of the source and the target language(s) file

 Source of translation (which system did the translation)

With this information, an XML file is created which is used during the evaluation process. Its

name is “translations-{comp|abs|post}.xml” (depending on the tool). This file is used as input

by the interactive evaluation process.

Figure 9 Data import

6.3.5.2 Interactive Evaluation

The evaluation interaction differs depending on the tool. It displays sentences with their

translations, in random order. Each tool has a section where the source and translations are

displayed, and below that a section with the evaluation options. At the bottom of the screen,

buttons for the different system possibilities are located:

 Navigation in the evaluation data is done with “Next” and “Previous”

 “End Session” terminates the current session

 “Import” creates a new evaluation file

 “Review” accesses evaluation results of a previous session

 “Statistics” displays a table with evaluation results

 Contract no. 248347

D2.6 V3.0 Page 160 of 164

6.3.5.2.1 Absolute Evaluation

For a given translation, its quality is determined. The translation is displayed, and users can

evaluate the adequacy and the fluency of the translation. Each time a 4-point scale is

presented, users select one of the options in both areas:

 For adequacy, the options are: { full content conveyed | major content conveyed |

some parts conveyed | incomprehensible }

 For fluency, the options are: { grammatical | mainly fluent | mainly nonfluent |

rubble }

By clicking on “Next” the result is stored, and the next sentence is presented, “Previous”

displays previous evaluation data, for corrections. The absolute evaluation interface is shown

in Figure 10.

Figure 10 Absolute evaluation

6.3.5.2.2 Comparative evaluation

The tool compares the quality of two translations against each other. Two translations of a

given sentence are displayed, for comparison. Users can decide which one is better, on a 4-

point scale.

Comparison options are: { first translation better | both equally good | both equally bad |

second translation better }.

The sequence of translation1 and translation2 is randomized to avoid biased evaluation (i.e.

translation1 is sometimes displayed first, sometimes second).

By clicking on “Next” the result is stored, and the next sentence is presented, “Previous”

displays previous evaluation data, for corrections. The comparative evaluation interface is

shown in Figure 11.

 Contract no. 248347

D2.6 V3.0 Page 161 of 164

Figure 11 Comparative evaluation

6.3.5.2.3 Post-editing evaluation

The tool measures the time needed to post-edit a translation output into a correct format

(HTER). It can afterwards also be used to compute the edit distance. The translation of the

source sentence is displayed. The translation field is editable, so users can edit the MT output.

The time from the first display of the sentence until the pressing of the “Save” button is

stored (in seconds). There is also a “comment” field which can be used to give comments on

the translation/post-editing. Navigation is done with the “Next” and “Previous” buttons. The

post-editing evaluation interface is shown in Figure 12.

Figure 12 Post-editing evaluation

6.3.5.2.4 Common features

All tools have common features; this relates mainly to the concepts of sessions. Usually

people cannot do the complete evaluation in one go, but do it in several sessions.

 Contract no. 248347

D2.6 V3.0 Page 162 of 164

Within a session, users can move back and forth in the evaluated sentences, and also go back

and correct an evaluation, by clicking on “Previous”. Also, a statistics on the progress of the

current session is displayed, as well as of the whole task. This is for motivation reasons. If

users want to stop they click on “End session”.

If a session is closed, another XML file containing the evaluation results is written/updated.

This file is called “evaluation-{abs|comp|post}.xml”.

Users can also access the evaluations of a previous session by clicking on “Review”. This

allows them to change evaluation results from previous sessions (i.e. modify the evaluation

XML file). The system displays the evaluated sentence pairs, users can click on the one they

want to change, and click on “edit” to edit it. This is relevant as sometimes the evaluation

criteria change after having seen the first couple of data.

6.3.5.3 Evaluation

Users have the option to see an overview of the evaluation at any time of their work. They

can click on “Statistics”, and then a first statistics on the number of sentences, and how they

were evaluated, is shown. Users can print this into a file.

For more detailed evaluation, the evaluation XML files used by the tools must be consulted,

like for inter-annotator agreement, or for edit-distance computation. The format of the

different tools differs slightly; the DTD of them is given in Figure 13.

Figure 13 DTDs of evaluation files

Examples of the evaluation files are given in Figure 14 (for easier processing, all XML mark-

ups are in separate lines).

 Contract no. 248347

D2.6 V3.0 Page 163 of 164

Figure 14 Examples of evaluation files

From this XML file, the interesting data can be extracted, e.g.:

 For Kappa calculation: sentence IDs, evaluator, evaluation results

 For edit distance calculation: translated text and post-edited text, etc.

Users should save away the evaluation XML files from the working directory of the MT-Eval

tools, to protect them from being overwritten by the next evaluation task.

6.3.6 Integration with external tools

The application does not need any external tool integration.

6.3.7 Contact

For further information and technical support installing and/or running this tool, please email

to Gr. Thurmair, Linguatec (g.thurmair@linguatec.de).

mailto:g.thurmair@linguatec.de

 Contract no. 248347

D2.6 V3.0 Page 164 of 164

7 Conclusions

This document contains the technical descriptions of the parallel data extraction and

alignment tools that have been developed within the ACCURAT project at the time of writing

(for the second half of tools that deal with comparable corpora acquisition from web refer to

the Deliverable D3.5 of the ACCURAT project). Most of them are included in predefined

workflows that are ready for immediate use:

 parallel textual unit (sentences and/or phrases) extraction from comparable

corpora (see section 1.1)

 NE/Term mapping from comparable corpora (see section 1.2).

The toolkit also contains an application that extracts translation lexicons from comparable

corpora (DEACC, section 6.2) and also tools that translate text using Google and/or Microsoft

provided APIs.

The documentation is intended to guide the (computer knowledgeable) user in installing and

running the tools. By using them, the users may expect to obtain parallel texts, parallel

terminology, general translation lexicons, and translated named entities, all of which are

useful as training data/resources for either SMT or Example-bases/Rule-based MT.

The third version of D2.6 documents the final versions of tools produced in the ACCURAT

project for the ACCURAT toolkit.

